A063494 a(n) = (2*n - 1)*(7*n^2 - 7*n + 3)/3.
1, 17, 75, 203, 429, 781, 1287, 1975, 2873, 4009, 5411, 7107, 9125, 11493, 14239, 17391, 20977, 25025, 29563, 34619, 40221, 46397, 53175, 60583, 68649, 77401, 86867, 97075, 108053, 119829, 132431, 145887, 160225, 175473, 191659, 208811, 226957, 246125, 266343, 287639
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n - 1)*(7*n^2 - 7*n + 3)/3: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Mathematica
Table[(2*n - 1)*(7*n^2 - 7*n + 3)/3, {n,1,30}] (* or *) LinearRecurrence[{4,-6,4,-1}, {1,17,75,203}, 30] (* G. C. Greubel, Dec 01 2017 *)
-
PARI
a(n) = { (2*n - 1)*(7*n^2 - 7*n + 3)/3 } \\ Harry J. Smith, Aug 23 2009
-
PARI
my(x='x+O('x^30)); Vec(serlaplace((-3+6*x+21*x^2+14*x^3)*exp(x)/3 + 1)) \\ G. C. Greubel, Dec 01 2017
Formula
G.f.: x*(1+x)*(1+12*x+x^2)/(1-x)^4. - Colin Barker, Mar 02 2012
E.g.f.: (-3 + 6*x + 21*x^2 + 14*x^3)*exp(x)/3 + 1. - G. C. Greubel, Dec 01 2017
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Wesley Ivan Hurt, May 11 2023
Comments