A063495 a(n) = (2*n-1)*(5*n^2-5*n+2)/2.
1, 18, 80, 217, 459, 836, 1378, 2115, 3077, 4294, 5796, 7613, 9775, 12312, 15254, 18631, 22473, 26810, 31672, 37089, 43091, 49708, 56970, 64907, 73549, 82926, 93068, 104005, 115767, 128384, 141886, 156303, 171665, 188002, 205344, 223721, 243163, 263700, 285362
Offset: 1
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(2*n-1)*(5*n^2-5*n+2)/2: n in [1..30]]; // G. C. Greubel, Dec 01 2017
-
Mathematica
Table[(2n-1)(5n^2-5n+2)/2,{n,40}] (* or *) LinearRecurrence[{4,-6,4,-1},{1,18,80,217},40] (* Harvey P. Dale, Dec 18 2011 *)
-
PARI
a(n) = (2*n - 1)*(5*n^2 - 5*n + 2)/2 \\ Harry J. Smith, Aug 23 2009
-
PARI
my(x='x+O('x^30)); Vec(serlaplace((-2+4*x+15*x^2+10*x^3)*exp(x)/2 + 1)) \\ G. C. Greubel, Dec 01 2017
Formula
From Harvey P. Dale, Dec 18 2011: (Start)
a(1)=1, a(2)=18, a(3)=80, a(4)=217, a(n) = 4*a(n-1) -6*a(n-2) +4*a(n-3) - a(n-4).
G.f.: (x^3+14*x^2+14*x+1)/(1-x)^4. (End)
E.g.f.: (-2 + 4*x + 15*x^2 + 10*x^3)*exp(x)/2 + 1. - G. C. Greubel, Dec 01 2017