A063539 Numbers n that are sqrt(n-1)-smooth: largest prime factor of n (=A006530(n)) < sqrt(n).
1, 8, 12, 16, 18, 24, 27, 30, 32, 36, 40, 45, 48, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 175, 176, 180, 182, 189, 192, 195, 196
Offset: 1
Keywords
Examples
a(100) = 360; a(1000) = 3744; a(10000) = 37665; a(100000)=375084; a(10^6) = 3697669; a(10^7) = 36519633; a(10^8) = 360856296; a(10^9) = 3571942311; a(10^10) = 35410325861; a(10^11) = 351498917129. - _Giovanni Resta_, Apr 12 2020
References
- Greene, D. H. and Knuth, D. E., Mathematics for the Analysis of Algorithms, 3rd ed. Boston, MA: Birkhäuser, pp. 95-98, 1990.
Links
- N. J. A. Sloane, Table of a(n) for n = 1..10622 [Extending and correcting earlier b-files from T. D. Noe and Marius A. Burtea]
- M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM, ITEM 29
- Steven Finch, "RE: Unusual Numbers.", Aug 27 2001.
- Hugo Pfoertner, Illustration of deviation from linear fit 3.7642*n, (2020).
- Hugo Pfoertner, Illustration of relative error of asymptotic approximation, (2020).
- Project Euler, Problem 668: Square root smooth numbers
- V. Ramaswami, On the number of positive integers less than x and free of prime divisors greater than x^c, Bull. Amer. Math. Soc. 55 (1949), 1122-1127.
- Eric W. Weisstein, Rough Number. [From _Jonathan Vos Post_, Sep 11 2010]
- Wikipedia, Dickman function
Crossrefs
Complement of A063538.
Cf. A006530.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.
Positions of zeros in A341591.
A001222 counts prime-power divisors.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A051283 lists numbers without a superior prime-power divisor.
A056924 counts strictly superior (or strictly inferior) divisors.
A059172 lists numbers without a superior squarefree divisor.
A063962 counts inferior prime divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341642 counts strictly superior prime divisors.
Programs
-
Magma
[1] cat [m:m in [2..200]| Max(PrimeFactors(m)) lt Sqrt(m) ]; // Marius A. Burtea, May 08 2019
-
Maple
N:= 1000: # to get all terms <= N Primes:= select(isprime, [2, seq(2*i+1, i=1..floor((N-1)/2))]): S:= {$1..N} minus {seq(seq(m*p, m = 1 .. min(p, N/p)), p=Primes)}: sort(convert(S, list)); # Robert Israel, Sep 02 2015
-
Mathematica
Prepend[Select[Range[192], FactorInteger[#][[-1, 1]] < Sqrt[#] &], 1] (* Ivan Neretin, Sep 02 2015 *)
-
Python
from math import isqrt from sympy import primepi def A063539(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+primepi(x//(y:=isqrt(x)))+sum(primepi(x//i)-primepi(i) for i in range(1,y))) return bisection(f,n,n) # Chai Wah Wu, Oct 05 2024
Formula
From Hugo Pfoertner, Apr 02 - Apr 12 2020: (Start)
For small n (e.g. n < 10000) a(n) can apparently be approximated by 3.7642*n.
Asymptotically, the number of sqrt(n)-smooth numbers < x is known to be (1-log(2))*x + O(x/log(x)), see Ramaswami (1949).
n = (1-log(2))*a(n) - 0.59436*a(n)/log(a(n)) is a fitted approximation. (End)
However, it is known that this fit only leads to an increase of accuracy in the range up to a(10^11). The improvement in accuracy suggested by the plot of the relative error for even larger n does not occur. For larger n the behavior of the error term O(x/log(x)) is not known. - Hugo Pfoertner, Nov 12 2023
Comments