cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063574 Number of steps to reach an integer == 1 (mod 4) when iterating the map n -> 3n/2 if n even or (3n+1)/2 if n odd.

Original entry on oeis.org

0, 2, 1, 2, 0, 1, 2, 4, 0, 4, 1, 3, 0, 1, 3, 4, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 7, 0, 1, 4, 6, 0, 2, 1, 2, 0, 1, 2, 5, 0, 6, 1, 3, 0, 1, 3, 5, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 4, 0, 1, 5, 6, 0, 2, 1, 2, 0, 1, 2, 4, 0, 4, 1, 3, 0, 1, 3, 4, 0, 2, 1, 2, 0, 1, 2, 3, 0, 3, 1, 5, 0, 1, 4, 5, 0, 2, 1, 2, 0, 1, 2, 7, 0
Offset: 1

Views

Author

N. J. A. Sloane, Sep 23 2002

Keywords

Examples

			8 -> 12 -> 18 -> 27 -> 41 takes 4 steps so a(8) = 4.
		

References

  • L. Flatto, Z-numbers and beta-transformations, in Symbolic dynamics and its applications (New Haven, CT, 1991), 181-201, Contemp. Math., 135, Amer. Math. Soc., Providence, RI, 1992.

Crossrefs

Cf. A007494.

Programs

  • Haskell
    a063574 n = fst $ until ((== 1) . flip mod 4 . snd)
                            (\(u, v) -> (u + 1, a007494 v)) (0, n)
    -- Reinhard Zumkeller, Dec 13 2014
  • Mathematica
    Table[Length[NestWhileList[If[EvenQ[#],(3#)/2,(3#+1)/2]&,n, Mod[#,4]!= 1&]]-1,{n,110}] (* Harvey P. Dale, Jul 06 2011 *)
  • PARI
    {stop=1000; for(n=1,105,c=0; k=n; while((k%4)!=1&&c
    				
  • PARI
    b(n)=valuation(n,2); a(n)=b(n)+b((3^b(n)*n/2^b(n)+1)/2) - Lambert Herrgesell (zero815(AT)googlemail.com) and Lambert Klasen (lambert.klasen(AT)gmx.net), Apr 24 2006
    

Formula

For odd n: a(n)=A007814(n+1), for even n: A007814(n) steps until an odd number is reached, which leads directly to the formula: with b(n)=A007814(n) (binary carry sequence) a(n)=b(n)+b((3^b(n)*n/2^b(n)+1)/2) - Lambert Herrgesell (zero815(AT)googlemail.com) and Lambert Klasen (lambert.klasen(AT)gmx.net), Apr 24 2006. Hence in particular, a(n) is well-defined.

Extensions

Extended by Klaus Brockhaus, Sep 23 2002