cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A063704 Cyclotomic polynomials Phi_n at x=phi divided by sqrt(5) and floored down (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

0, 0, 1, 2, 1, 7, 0, 20, 3, 10, 2, 143, 2, 376, 5, 11, 21, 2583, 6, 6764, 15, 74, 34, 46367, 18, 7435, 89, 2618, 104, 832039, 25, 2178308, 987, 3399, 610, 20160, 136, 39088168, 1597, 23228, 861, 267914295, 182, 701408732, 4895, 35920, 10946, 4807526975
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(floor(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2))/(sqrt(5)))),j=0..120)];
  • Mathematica
    Floor[Simplify[Cyclotomic[Range[0, 50], GoldenRatio]]/Sqrt[5]] (* Paolo Xausa, Feb 27 2024 *)

Extensions

a(47) corrected by Sean A. Irvine, May 08 2023

A063705 Cyclotomic polynomials Phi_n at x=phi, rounded to nearest integer (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

2, 1, 3, 5, 4, 16, 2, 45, 8, 23, 5, 320, 5, 841, 11, 26, 48, 5776, 15, 15125, 34, 167, 76, 103680, 41, 16626, 199, 5855, 233, 1860496, 56, 4870845, 2208, 7602, 1364, 45081, 305, 87403801, 3571, 51941, 1926, 599074576, 407, 1568397605, 10946, 80321
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(round(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2)))),j=0..120)];
  • Mathematica
    Join[{2}, Round[Simplify[Cyclotomic[Range[50], GoldenRatio]]]] (* Paolo Xausa, Feb 27 2024 *)

Extensions

a(43) corrected by Sean A. Irvine, May 08 2023

A063707 Cyclotomic polynomials Phi_n at x=phi, ceiled up (where phi = tau = (sqrt(5)+1)/2).

Original entry on oeis.org

2, 1, 3, 6, 4, 17, 2, 46, 8, 24, 5, 321, 6, 842, 12, 26, 48, 5777, 15, 15126, 35, 167, 77, 103681, 42, 16627, 200, 5856, 234, 1860497, 57, 4870846, 2208, 7602, 1365, 45081, 306, 87403802, 3572, 51941, 1927, 599074577, 408, 1568397606, 10947, 80321
Offset: 0

Views

Author

Antti Karttunen, Aug 03 2001

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); Phi_at_x := (n,y) -> subs(x=y,cyclotomic(n,x)); [seq(ceil(evalf(simplify(Phi_at_x(j,(sqrt(5)+1)/2)))),j=0..120)];
  • Mathematica
    Join[{2}, Ceiling[Simplify[Cyclotomic[Range[50], GoldenRatio]]]] (* Paolo Xausa, Feb 27 2024 *)
Showing 1-3 of 3 results.