A063717 a(n) is the greatest divisor of n^2 that is less than n.
1, 1, 2, 1, 4, 1, 4, 3, 5, 1, 9, 1, 7, 9, 8, 1, 12, 1, 16, 9, 11, 1, 18, 5, 13, 9, 16, 1, 25, 1, 16, 11, 17, 25, 27, 1, 19, 13, 32, 1, 36, 1, 22, 27, 23, 1, 36, 7, 25, 17, 26, 1, 36, 25, 49, 19, 29, 1, 50, 1, 31, 49, 32, 25, 44, 1, 34, 23, 50, 1, 64, 1, 37, 45, 38, 49, 52, 1, 64, 27, 41
Offset: 2
Keywords
Examples
a(45)=27 because set of divisors of 45^2 is {1, 3, 5, 9, 15, 25, 27, 45, 75, 81, 135, 225, 405, 675, 2025} and the greatest element of the set less than 45 is 27.
Links
- Harry J. Smith, Table of n, a(n) for n = 2..1000
Programs
-
Maple
with(numtheory): for n from 2 to 200 do a := divisors(n^2): b := a[(tau(n^2)-1)/2]: printf(`%d,`,b); od:
-
Mathematica
f[n_] := Module[{dn2 = Divisors[n^2]}, Last[Take[dn2, {1, Flatten[Position[dn2, n]][[ 1]] - 1}]]]; Table[f[i], {i, 2, 85}] Table[Select[Divisors[n^2],#
Harvey P. Dale, Apr 23 2016 *) -
PARI
{ for (n=2, 1000, d=divisors(n^2); write("b063717.txt", n, " ", d[length(d)\2]) ) } \\ Harry J. Smith, Aug 28 2009
Comments