cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063832 Number of structurally isomeric homologs with molecular formula C_{3+n} H_{6+2n}.

Original entry on oeis.org

1, 1, 3, 6, 15, 33, 83, 196, 491, 1214, 3068, 7754, 19834, 50872, 131423, 340763, 887839, 2321193, 6090979, 16031341, 42319223, 112003765, 297164610, 790190726, 2105607907, 5621642203, 15036126167, 40284850520, 108102408101
Offset: 0

Views

Author

Vladeta Jovovic, Aug 21 2001

Keywords

References

  • Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • Ching-Wan Lam, "Enumeration of isomers of alkylcyclopropanes by means of alkyl 1,1-biradicals", J. Math. Chem., 27 (2000), 23-25. [From Parthasarathy Nambi, Aug 24 2008]

Crossrefs

Column k=3 of A305059.
Column 3 of a table (in Parks and Hendrickson) in which the subsequent columns are A116719, A120333, A120779, A120790, A120795, A121156, A121157.

Programs

  • Mathematica
    G[n_] := Module[{g}, Do[g[x_] = 1 + x*(g[x]^3/6 + g[x^2]*g[x]/2 + g[x^3]/3) + O[x]^n // Normal, {n}]; g[x]];
    T[n_, k_] := Module[{t = G[n], g}, t = x*((t^2 + (t /. x -> x^2))/2); g[e_] = (Normal[t + O[x]^Quotient[n, e]] /. x -> x^e) + O[x]^n // Normal; Coefficient[(Sum[EulerPhi[d]*g[d]^(k/d), {d, Divisors[k]}]/k + If[OddQ[ k], g[1]*g[2]^Quotient[k, 2], (g[1]^2 + g[2])*g[2]^(k/2-1)/2])/2, x, n]];
    a[n_] := T[n + 3, 3];
    Table[a[n], {n, 0, 29}] (* Jean-François Alcover, Jul 03 2018, after Andrew Howroyd *)

Formula

G.f.: A(x) = cycle_index(S3[S2]B(x)), where B(x) is g.f. for A000598.