cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A097702 a(n) = (A063880(n) - 108)/216.

Original entry on oeis.org

0, 2, 3, 5, 6, 8, 9, 11, 14, 15, 17, 18, 20, 21, 23, 26, 27, 29, 30, 32, 33, 35, 36, 38, 39, 41, 42, 44, 45, 47, 48, 50, 51, 53, 54, 56, 57, 59, 63, 65, 66, 68, 69, 71, 72, 74, 75, 77, 78, 80, 81, 83, 86, 89, 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 108, 110
Offset: 1

Views

Author

Ralf Stephan, Aug 26 2004

Keywords

Comments

Conjecture: k is a term iff 6*k+3 is squarefree. - Vladeta Jovovic, Aug 27 2004
It is only a conjecture that all terms are integers (confirmed up to 10^6 by Robert G. Wilson v).
From Amiram Eldar, Aug 31 2024: (Start)
The first conjecture is true. If m = 216*k + 108 = 108 * (2*k + 1) is a term of A063880, then 2*k+1 is a squarefree number coprime to 6. This is because sigma(n)/usigma(n) is multiplicative, equals 1 if and only if n is squarefree and larger than 1 otherwise, sigma(108)/usigma(108) = 2 and sigma(3^k)/usigma(3^k) increases with k. 6*k+3 = 3*(2*k+1) is squarefree because 2*k+1 is a squarefree coprime to 6.
Assuming that (A063880(n) - 108)/216 is an integer for all n, we have a(n) = (A276378(n) - 1)/2. (End)

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; (Select[ Range[ 24500], DivisorSigma[1, # ] == 2usigma[ # ] &] - 108)/216 (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    {u(n)=sumdiv(n,d,if(gcd(d,n/d)==1,d))}
    n=2; while(n<50000,n++; if(sigma(n)==2*u(n),print1((n-108)/216", ")))

A097703 Numbers j such that m = 216*j + 108 satisfies sigma(m) != 2*usigma(m).

Original entry on oeis.org

1, 4, 7, 10, 12, 13, 16, 19, 22, 24, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 60, 61, 62, 64, 67, 70, 73, 76, 79, 82, 84, 85, 87, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 122, 124, 127, 130, 133, 136, 137, 139, 142, 144, 145, 148, 151, 154, 157
Offset: 1

Views

Author

Ralf Stephan, Aug 26 2004

Keywords

Comments

Conjecture: all numbers of form 3k + 1 are here. Other terms are listed in A097704.
From Amiram Eldar, Aug 31 2024: (Start)
The conjecture is true. If j = 3*k+1, then m = 324*(2*k+1). Let e = A007949(2*k+1) >= 0, so 2*k+1 = 3^e * i and i coprime to 6. Then sigma(m)/(2 * usigma(m)) = (7/20) * (3^(e+5)-1)/(3^(e+4)+1) * sigma(i)/usigma(i) >= 847/820 > 1, because sigma(i)/usigma(i) >= 1 for all i.
If m = 216*j + 108 = 108*(2*j+1) then sigma(m) = 2*usigma(m) if and only if 2*j+1 is a squarefree number coprime to 3 (see A097702), i.e., 2*j+1 is a term of A276378. Therefore this sequence consists of numbers j such that 2*j+1 is either a multiple of 3 or nonsquarefree (or both). (End)

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Complement[ Range[157], (Select[ Range[37000], DivisorSigma[1, # ] == 2usigma[ # ] &] - 108)/216] (* Robert G. Wilson v, Aug 28 2004 *)
  • PARI
    is(k) = {my(f = factor(216*k + 108)); sigma(f) != 2 * prod(i = 1, #f~, 1 + f[i,1]^f[i,2]);} \\ Amiram Eldar, Aug 31 2024

A348505 a(n) = usigma(n) / gcd(sigma(n), usigma(n)), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 1, 1, 5, 1, 1, 1, 3, 10, 1, 1, 5, 1, 1, 1, 17, 1, 10, 1, 5, 1, 1, 1, 3, 26, 1, 7, 5, 1, 1, 1, 11, 1, 1, 1, 50, 1, 1, 1, 3, 1, 1, 1, 5, 10, 1, 1, 17, 50, 26, 1, 5, 1, 7, 1, 3, 1, 1, 1, 5, 1, 1, 10, 65, 1, 1, 1, 5, 1, 1, 1, 6, 1, 1, 26, 5, 1, 1, 1, 17, 82, 1, 1, 5, 1, 1, 1, 3, 1, 10, 1, 5, 1, 1, 1, 11, 1, 50, 10, 130
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

This is not multiplicative. The first point where a(m*n) = a(m)*a(n) does not hold for coprime m and n is 72 = 8*9, where a(72) = 6 != 3*10 = a(8) * a(9).

Crossrefs

Cf. A000203, A005117, A034448, A048146, A063880, A348503, A348504, A348506 (positions of ones).
Cf. also A344697, A348049.

Programs

  • Mathematica
    f1[p_, e_] := p^e + 1; f2[p_, e_] := (p^(e + 1) - 1)/(p - 1); a[1] = 1; a[n_] := (usigma = Times @@ f1 @@@ (fct = FactorInteger[n])) / GCD[usigma, Times @@ f2 @@@ fct]; Array[a, 100] (* Amiram Eldar, Oct 29 2021 *)
  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    A348505(n) = { my(u=A034448(n)); (u/gcd(u, sigma(n))); };

Formula

a(n) = A034448(n) / A348503(n) = A034448(n) / gcd(A000203(n), A034448(n)).

A348506 Numbers k such that sigma(k) is a multiple of usigma(k), where sigma is the sum of divisors function, A000203, and usigma is the unitary sigma, A034448.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 118, 119
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2021

Keywords

Comments

Conjectured to be the union of A005117 and A063880.

Crossrefs

Positions of ones in A348505.
Cf. A005117 and A063880.

Programs

  • PARI
    A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448
    isA348506(n) = !(sigma(n)%A034448(n));

A098241 Numbers k such that 216*k+108 is a term of A097703 and A007494 and A098240.

Original entry on oeis.org

302, 2117, 2909, 3327, 3932, 5142, 5747, 6957, 8772, 9377, 11192, 12402, 13007, 14217, 14547, 16032, 17847, 18452, 20267, 20366, 21477, 22082, 23292, 23897, 25107, 25403, 26922, 27527, 29342, 30552, 31157, 32367, 32972, 34182, 35997, 36602, 37823, 38417, 39627
Offset: 1

Views

Author

Ralf Stephan and Robert G. Wilson v, Sep 15 2004

Keywords

Comments

Numbers k such that m = 216*k+108 satisfies sigma(m) <> 2*usigma(m) (A097703), m is not of the form 3x+1 (A007494) and GCD(2*m+1, numerator(Bernoulli(4*m+2))) is squarefree (A098240).
Also, terms m of A097704 such that GCD(2*m+1, Bernoulli(4*m+2)) is squarefree. Most terms of A097704 are in A098240. These are the exceptions.

Crossrefs

Programs

  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; lmt = 1296000; t = (Select[ Range[ lmt], DivisorSigma[1, # ] == 2usigma[ # ] &] - 108)/216; u = (Select[ Range[ Floor[(lmt - 108)/432]], !SquareFreeQ[ GCD[ #, Numerator[ BernoulliB[ 2# ]] ]] &] -1)/2; v = Table[ 3k - 2, {k, Floor[(lmt - 108)/216]}]; Complement[ Range[ Floor[ (lmt - 108)/216]], t, u, v]
    q[n_] := Mod[n, 3] != 1 && (Divisible[2*n + 1, 3] || (! Divisible[2*n + 1, 3] && ! SquareFreeQ[2*n + 1])) && SquareFreeQ[GCD[2*n + 1, BernoulliB[4*n + 2]]]; Select[Range[10^4], q] (* Amiram Eldar, Aug 31 2024 *)

Extensions

More terms from Amiram Eldar, Aug 31 2024
Showing 1-5 of 5 results.