cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063936 Numbers k such that the sum of unitary proper divisors of k is a square > 1.

Original entry on oeis.org

15, 26, 44, 56, 95, 96, 119, 122, 124, 140, 143, 194, 215, 216, 236, 287, 304, 364, 386, 407, 495, 511, 527, 551, 556, 560, 575, 639, 740, 752, 764, 780, 791, 794, 815, 871, 900, 935, 936, 992, 1004, 1036, 1116, 1159, 1196, 1199, 1232, 1295, 1328, 1346
Offset: 1

Views

Author

Felice Russo, Aug 31 2001

Keywords

Comments

A unitary divisor of n is a divisor d of n such that gcd(d, n/d) = 1.

Examples

			The unitary divisors of 15 are 1,3,5,15 and then the unitary aliquot part is 9 which is a square.
		

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a063936 n = a063936_list !! (n-1)
    a063936_list = map (+ 1) $
                   findIndices (\x -> x > 1 && a010052 x == 1) a034460_list
    -- Reinhard Zumkeller, Aug 15 2012
  • Mathematica
    us[1] = 0; us[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; Select[Range[1500], (s = us[#]) > 1 && IntegerQ@Sqrt[s] &] (* Amiram Eldar, Mar 14 2020 *)
  • PARI
    us(n) = sumdiv(n,d, if(gcd(d,n/d)==1,d));
    j=[]; for(n=1,3000, if(us(n)-n > 1 && issquare(us(n)-n),j=concat(j,n))); j
    
  • PARI
    us(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
    { n=0; for (m=1, 10^9, u=us(m) - m; if (issquare(u) && u > 1, write("b063936.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 03 2009
    

Formula

A034460(a(n)) > 1 and A010052(A034460(a(n))) = 1. - Reinhard Zumkeller, Aug 15 2012

Extensions

More terms from Jason Earls, Sep 04 2001