A063955 Sum of the unitary prime divisors of n!.
0, 2, 5, 3, 8, 5, 12, 12, 12, 7, 18, 18, 31, 24, 24, 24, 41, 41, 60, 60, 60, 49, 72, 72, 72, 59, 59, 59, 88, 88, 119, 119, 119, 102, 102, 102, 139, 120, 120, 120, 161, 161, 204, 204, 204, 181, 228, 228, 228, 228, 228, 228, 281, 281, 281, 281, 281, 252, 311, 311
Offset: 1
Examples
Prime divisors of 20! which have exponent 1 (i.e., unitary prime divisors) are {11, 13, 17, 19}, so a(20) = 11 + 13 + 17 + 19= 60. (The sum of all its prime divisors (unitary and non-unitary) is A034387(20).)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harry J. Smith)
Programs
-
Maple
a:= n-> add(`if`(i[2]=1, i[1], 0), i=ifactors(n!)[2]): seq(a(n), n=1..60); # Alois P. Heinz, Jun 24 2018
-
Mathematica
a[n_] := Select[FactorInteger[n!], #[[2]] == 1&][[All, 1]] // Total; Array[a, 60] (* Jean-François Alcover, Jan 01 2022 *)
-
PARI
a(n) = my(f=factor(n!)~); sum(i=1, length(f), if (f[2, i]==1, f[1, i])); \\ Harry J. Smith, Sep 04 2009
Formula
a(n) = Sum_{k=floor(n/2)+1..n} k*c(k), where c is the prime characteristic (A010051). - Wesley Ivan Hurt, Dec 23 2023
a(n) = A063956(n!). - Amiram Eldar, Jul 24 2024