cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063956 Sum of unitary prime divisors of n.

Original entry on oeis.org

0, 2, 3, 0, 5, 5, 7, 0, 0, 7, 11, 3, 13, 9, 8, 0, 17, 2, 19, 5, 10, 13, 23, 3, 0, 15, 0, 7, 29, 10, 31, 0, 14, 19, 12, 0, 37, 21, 16, 5, 41, 12, 43, 11, 5, 25, 47, 3, 0, 2, 20, 13, 53, 2, 16, 7, 22, 31, 59, 8, 61, 33, 7, 0, 18, 16, 67, 17, 26, 14, 71, 0, 73, 39, 3, 19, 18, 18, 79, 5, 0
Offset: 1

Views

Author

Labos Elemer, Sep 04 2001

Keywords

Examples

			The prime divisors of 420 = 2^2 * 3 * 5 * 7. Among them, those that have exponent 1 (i.e., unitary prime divisors) are {3, 5, 7}, so a(420) = 3 + 5 + 7 = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, And[PrimeQ@ #, GCD[#, n/#] == 1] &], {n, 81}] (* Michael De Vlieger, Feb 17 2019 *)
    f[p_, e_] := If[e == 1, p, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
    Join[{0},Table[Total[Select[FactorInteger[n],#[[2]]==1&][[;;,1]]],{n,2,100}]] (* Harvey P. Dale, Jan 26 2025 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[2, i]==1, a+=f[1, i])); write("b063956.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009

Formula

a(n*m) = a(n) + a(m) - a(gcd(n^2, m)) - a(gcd(n, m^2)) for all n and m > 0 (conjecture). - Velin Yanev, Feb 17 2019
From Amiram Eldar, Jul 24 2024: (Start)
a(n) = A008472(n) - A063958(n).
Additive with a(p^e) = p is e = 1, and 0 otherwise. (End)

Extensions

Example clarified by Harvey P. Dale, Jan 26 2025