cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A063958 Sum of the non-unitary prime divisors of n: sum of those prime divisors for which the exponent in the prime factorization exceeds 1.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 5, 0, 3, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 2, 3, 0, 0, 2, 7, 5, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 0, 0, 3, 2, 0, 0, 0, 2, 0, 0, 0, 5, 0, 0, 5, 2, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0, 2, 0, 3, 0, 2, 0, 0, 0, 2, 0, 7, 3, 7, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Labos Elemer, Sep 04 2001

Keywords

Crossrefs

Cf. A007947 (rad), A008472 (sopf).

Programs

  • Maple
    a:= proc(n) option remember; add(`if`(i[2]>1, i[1], 0), i=ifactors(n)[2]) end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 24 2018
  • Mathematica
    Array[Total@ Select[FactorInteger@ #, Last@ # > 1 &][[All, 1]] &, 105] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    { for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[2, i]>1, a+=f[1, i])); write("b063958.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009

Formula

G.f.: Sum_{k>=1} prime(k) * x^(prime(k)^2) / (1 - x^(prime(k)^2)). - Ilya Gutkovskiy, Apr 06 2020
a(n) = sopf(rad(n/rad(n))). - Wesley Ivan Hurt, Nov 21 2021
a(n) = Sum_{p^2|n} p. - Wesley Ivan Hurt, Feb 21 2022
From Amiram Eldar, Jul 24 2024: (Start)
a(n) = A008472(n) - A063956(n).
Additive with a(p^e) = p if e >= 2, and 0 otherwise. (End)

A063955 Sum of the unitary prime divisors of n!.

Original entry on oeis.org

0, 2, 5, 3, 8, 5, 12, 12, 12, 7, 18, 18, 31, 24, 24, 24, 41, 41, 60, 60, 60, 49, 72, 72, 72, 59, 59, 59, 88, 88, 119, 119, 119, 102, 102, 102, 139, 120, 120, 120, 161, 161, 204, 204, 204, 181, 228, 228, 228, 228, 228, 228, 281, 281, 281, 281, 281, 252, 311, 311
Offset: 1

Views

Author

Labos Elemer, Sep 04 2001

Keywords

Examples

			Prime divisors of 20! which have exponent 1 (i.e., unitary prime divisors) are {11, 13, 17, 19}, so a(20) = 11 + 13 + 17 + 19= 60. (The sum of all its prime divisors (unitary and non-unitary) is A034387(20).)
		

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(i[2]=1, i[1], 0), i=ifactors(n!)[2]):
    seq(a(n), n=1..60);  # Alois P. Heinz, Jun 24 2018
  • Mathematica
    a[n_] := Select[FactorInteger[n!], #[[2]] == 1&][[All, 1]] // Total;
    Array[a, 60] (* Jean-François Alcover, Jan 01 2022 *)
  • PARI
    a(n) = my(f=factor(n!)~); sum(i=1, length(f), if (f[2, i]==1, f[1, i])); \\ Harry J. Smith, Sep 04 2009

Formula

a(n) = Sum_{k=floor(n/2)+1..n} k*c(k), where c is the prime characteristic (A010051). - Wesley Ivan Hurt, Dec 23 2023
a(n) = A063956(n!). - Amiram Eldar, Jul 24 2024

A242152 Numbers n such that the sum of their unitary prime divisors divides sigma(n).

Original entry on oeis.org

15, 24, 28, 35, 40, 42, 54, 60, 66, 95, 96, 110, 114, 117, 119, 120, 132, 135, 140, 143, 147, 168, 195, 198, 209, 224, 240, 250, 252, 258, 280, 287, 290, 315, 319, 322, 323, 360, 375, 377, 380, 384, 408, 460, 468, 470, 476, 480, 486, 496, 506, 507, 510, 520
Offset: 1

Views

Author

Paolo P. Lava, May 05 2014

Keywords

Examples

			Divisors of 315 are 1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315. Its unitary prime divisors are 5 and 7. Finally, sigma(315) = 624 and 624 / (5 + 7) = 52.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do a:=divisors(n); b:=0;
    for k from 1 to nops(a) do if isprime(a[k]) then if gcd(a[k],n/a[k])=1 then b:=b+a[k]; fi; fi; od;
    if b>0 then if type(sigma(n)/b,integer) then print(n); fi; fi; od; end: P(10^10);
  • Mathematica
    unitaryPrimeSum[1]=0; unitaryPrimeSum[n_] := Total[(f = FactorInteger[n])[[;;,1]] * (Boole[# == 1]& /@ f[[;;,2]])]; Select[Range[500], (ups = unitaryPrimeSum[#]) > 0 && Divisible[DivisorSigma[1, #], ups] &] (* Amiram Eldar, Nov 26 2019 *)
  • PARI
    isok(n) = (v = sumdiv(n, d, d*isprime(d)*(gcd(d, n/d)==1))) && ! (sigma(n) % v); \\ Michel Marcus, May 05 2014

A286875 If n = Product (p_j^k_j) then a(n) = Sum (k_j >= 2, p_j^k_j).

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 8, 9, 0, 0, 4, 0, 0, 0, 16, 0, 9, 0, 4, 0, 0, 0, 8, 25, 0, 27, 4, 0, 0, 0, 32, 0, 0, 0, 13, 0, 0, 0, 8, 0, 0, 0, 4, 9, 0, 0, 16, 49, 25, 0, 4, 0, 27, 0, 8, 0, 0, 0, 4, 0, 0, 9, 64, 0, 0, 0, 4, 0, 0, 0, 17, 0, 0, 25, 4, 0, 0, 0, 16, 81, 0, 0, 4, 0, 0, 0, 8, 0, 9, 0, 4, 0, 0, 0, 32, 0, 49, 9, 29, 0, 0, 0, 8, 0, 0, 0, 31
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 02 2017

Keywords

Comments

Sum of unitary, proper prime power divisors of n.

Examples

			a(360) = a(2^3*3^2*5) = 2^3 + 3^2 = 17.
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] && PrimePowerQ[#] && !PrimeQ[#] &], {n, 108}]
    f[p_, e_] := If[e == 1, 0, p^e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jul 24 2024 *)
  • PARI
    A286875(n) = { my(f=factor(n)); for (i=1, #f~, if(f[i, 2] < 2, f[i, 1] = 0)); vecsum(vector(#f~,i,f[i,1]^f[i,2])); }; \\ Antti Karttunen, Oct 07 2017
  • Python
    from sympy import primefactors, isprime, gcd, divisors
    def a(n): return sum(d for d in divisors(n) if gcd(d, n//d)==1 and len(primefactors(d))==1 and not isprime(d))
    print([a(n) for n in range(1, 109)]) # Indranil Ghosh, Aug 02 2017
    

Formula

a(n) = Sum_{d|n, d = p^k, p prime, k >= 2, gcd(d, n/d) = 1} d.
a(A246547(k)) = A246547(k).
a(A005117(k)) = 0.
Additive with a(p^e) = p^e if e >= 2, and 0 otherwise. - Amiram Eldar, Jul 24 2024

A064143 Sum of unitary prime divisors of binomial(n, floor(n/2)).

Original entry on oeis.org

0, 2, 3, 5, 7, 5, 12, 14, 9, 7, 23, 21, 27, 27, 29, 31, 48, 46, 62, 60, 59, 59, 81, 79, 66, 66, 59, 59, 93, 93, 124, 126, 120, 118, 125, 123, 141, 141, 158, 156, 193, 193, 225, 225, 194, 194, 243, 241, 241, 241, 245, 245, 298, 298, 321, 321, 314, 314, 365, 365, 395
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Crossrefs

Programs

  • PARI
    a(n) = { my(f=factor(binomial(n, n\2))); sum(i=1, #f~, if (f[i,2]==1, f[i,1])) } \\ Harry J. Smith, Sep 09 2009

Formula

a(n) = A063956(A001405(n)).

A345373 Sum of the divisor complements of the unitary prime divisors of n.

Original entry on oeis.org

0, 1, 1, 0, 1, 5, 1, 0, 0, 7, 1, 4, 1, 9, 8, 0, 1, 9, 1, 4, 10, 13, 1, 8, 0, 15, 0, 4, 1, 31, 1, 0, 14, 19, 12, 0, 1, 21, 16, 8, 1, 41, 1, 4, 9, 25, 1, 16, 0, 25, 20, 4, 1, 27, 16, 8, 22, 31, 1, 32, 1, 33, 9, 0, 18, 61, 1, 4, 26, 59, 1, 0, 1, 39, 25, 4, 18, 71, 1, 16, 0, 43
Offset: 1

Views

Author

Wesley Ivan Hurt, Jun 16 2021

Keywords

Comments

a(p) = 1 for p prime.

Examples

			a(30) = 30 * Sum_{p|30, p prime} floor(1/gcd(p,30/p))/p = 30 * (1/2 + 1/3 + 1/5) = 31.
		

Crossrefs

Cf. A063956.

Formula

a(n) = n * Sum_{p|n, p prime} floor(1/gcd(p,n/p)) / p.
Showing 1-6 of 6 results.