cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063967 Triangle read by rows, T(n,k) = T(n-1,k) + T(n-2,k) + T(n-1,k-1) + T(n-2,k-1) and T(0,0) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 3, 7, 5, 1, 5, 15, 16, 7, 1, 8, 30, 43, 29, 9, 1, 13, 58, 104, 95, 46, 11, 1, 21, 109, 235, 271, 179, 67, 13, 1, 34, 201, 506, 705, 591, 303, 92, 15, 1, 55, 365, 1051, 1717, 1746, 1140, 475, 121, 17, 1, 89, 655, 2123, 3979, 4759, 3780, 2010, 703, 154, 19, 1
Offset: 0

Views

Author

Henry Bottomley, Sep 05 2001

Keywords

Examples

			T(3,1) = T(2,1) + T(1,1) + T(2,0) + T(1,0) = 3 + 1 + 2 + 1 = 7.
Triangle begins:
   1,
   1,   1,
   2,   3,   1,
   3,   7,   5,   1,
   5,  15,  16,   7,   1,
   8,  30,  43,  29,   9,   1,
  13,  58, 104,  95,  46,  11,  1,
  21, 109, 235, 271, 179,  67, 13,  1,
  34, 201, 506, 705, 591, 303, 92, 15, 1
		

Crossrefs

Row sums are A002605.
Columns include: A000045(n+1), A023610(n-1).
Main diagonal: A000012, a(n, n-1) = A005408(n-1).
Matrix inverse: A091698, matrix square: A091700.
Cf. A321620.
Sum_{k=0..n} x^k*T(n,k) is (-1)^n*A057086(n) (x=-11), (-1)^n*A057085(n+1) (x=-10), (-1)^n*A057084(n) (x=-9), (-1)^n*A030240(n) (x=-8), (-1)^n*A030192(n) (x=-7), (-1)^n*A030191(n) (x=-6), (-1)^n*A001787(n+1) (x=-5), A000748(n) (x=-4), A108520(n) (x=-3), A049347(n) (x=-2), A000007(n) (x=-1), A000045(n) (x=0), A002605(n) (x=1), A030195(n+1) (x=2), A057087(n) (x=3), A057088(n) (x=4), A057089(n) (x=5), A057090(n) (x=6), A057091(n) (x=7), A057092(n) (x=8), A057093(n) (x=9). - Philippe Deléham, Nov 03 2006

Programs

  • Haskell
    a063967_tabl = [1] : [1,1] : f [1] [1,1] where
       f us vs = ws : f vs ws where
         ws = zipWith (+) ([0] ++ us ++ [0]) $
              zipWith (+) (us ++ [0,0]) $ zipWith (+) ([0] ++ vs) (vs ++ [0])
    -- Reinhard Zumkeller, Apr 17 2013
  • Mathematica
    T[n_, k_] := Sum[Binomial[j, n - j]*Binomial[j, k], {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 11 2017, after Paul Barry *)
    (* Function RiordanSquare defined in A321620. *)
    RiordanSquare[1/(1 - x - x^2), 11] // Flatten (* Peter Luschny, Nov 27 2018 *)

Formula

G.f.: 1/(1-x*(1+x)*(1+y)). - Vladeta Jovovic, Oct 11 2003
Riordan array (1/(1-x-x^2), x(1+x)/(1-x-x^2)). The inverse of the signed version (1/(1+x-x^2),x(1-x)/(1+x-x^2)) is abs(A091698). - Paul Barry, Jun 10 2005
T(n, k) = Sum_{j=0..n} C(j, n-j)C(j, k). - Paul Barry, Nov 09 2005
Diagonal sums are A002478. - Paul Barry, Nov 09 2005
A026729*A007318 as infinite lower triangular matrices. - Philippe Deléham, Dec 11 2008
Central coefficients T(2*n,n) are A137644. - Paul Barry, Apr 15 2010
Product of Riordan arrays (1, x(1+x))*(1/(1-x), x/(1-x)), that is, A026729*A007318. - Paul Barry, Mar 14 2011
Triangle T(n,k), read by rows, given by (1,1,-1,0,0,0,0,0,0,0,...) DELTA (1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 12 2011