cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063984 Minimal number of integer points in the Euclidean plane which are contained in the interior of any convex n-gon whose vertices have integer coordinates.

Original entry on oeis.org

0, 0, 1, 1, 4, 4, 7, 10, 17, 19, 27, 34, 45, 52, 68, 79, 98, 112, 135, 154, 183, 199, 237, 262, 300, 332, 378, 416, 469, 508, 573, 616, 688, 732, 818, 872, 959, 1020, 1120, 1202, 1305, 1391, 1504, 1598, 1724, 1815, 1961, 2064, 2220, 2332, 2497, 2625, 2785
Offset: 3

Views

Author

Pierre Bornsztein (pbornszt(AT)club-internet.fr), Sep 06 2001; May 20 2002

Keywords

Comments

Consider convex lattice n-gons, that is, polygons whose n vertices are points on the integer lattice Z^2 and whose interior angles are strictly less than Pi. a(n) is the least possible number of lattice points in the interior of such an n-gon.
The result a(5) = 1 seems to be due to Ehrhart. Using Pick's formula, it is not difficult to prove that the determination of a(k) is equivalent to the determination of the minimal area of a convex k-gon whose vertices are lattice points.
Results before 2018 for odd n came from the following authors: a(3) (trivial), a(5) (Arkinstall), a(7) and a(9) (Rabinowitz), a(11) (Olszewska), a(13) (Simpson) and a(15) (Castryck). - Jamie Simpson, Oct 18 2022

Examples

			For example, every convex pentagon whose vertices are lattice points contains at least one lattice point and it is not difficult to construct such a pentagon with only one interior lattice point. Thus a(5) = 1.
		

Crossrefs

Formula

a(n) = A070911(n)/2 - n/2 + 1. [Simpson]
See Barany & Tokushige for asymptotics.
a(n) = min(g: A322345(g) >= n). - Andrey Zabolotskiy, Apr 23 2023

Extensions

Additional comments from Steven Finch, Dec 06 2003
More terms from Matthias Henze, Jul 27 2015
a(17)-a(23) from Hugo Pfoertner, Nov 27 2018
a(24)-a(25) from Hugo Pfoertner, Dec 04 2018
a(26)-a(55) from and definition clarified by Günter Rote, Sep 19 2023