A063994 a(n) = Product_{primes p dividing n } gcd(p-1, n-1).
1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 4, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 4, 1, 36, 1, 4, 1, 40, 1, 42, 1, 8, 1, 46, 1, 6, 1, 4, 3, 52, 1, 4, 1, 4, 1, 58, 1, 60, 1, 4, 1, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 4, 3, 4, 1, 78, 1, 2, 1, 82, 1, 16, 1, 4, 1, 88, 1, 36, 1
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael numbers, Ann. of Math. (2) 139 (1994), no. 3, 703-722.
- R. Baillie and S. S. Wagstaff, Lucas pseudoprimes, Mathematics of Computation, 35 (1980), 1391-1417.
- P. Erdős and C. Pomerance, On the number of false witnesses for a composite number, Mathematics of Computation, 46 (1986), 259-279.
- Keith Gibson, NMBRTHRY posting, Sep 07, 2001.
- Romeo Meštrović, Generalizations of Carmichael numbers I, arXiv:1305.1867v1 [math.NT], May 04 2013.
- Carl Pomerance, NMBRTHRY posting, Jul 26, 2001.
Programs
-
Haskell
a063994 n = product $ map (gcd (n - 1) . subtract 1) $ a027748_row n -- Reinhard Zumkeller, Mar 02 2013
-
Mathematica
f[n_] := Times @@ GCD[n - 1, First /@ FactorInteger@ n - 1]; f[1] = 1; Array[f, 92] (* Robert G. Wilson v, Aug 08 2011 *)
-
PARI
for (n=1, 1000, f=factor(n)~; a=1; for (i=1, length(f), a*=gcd(f[1, i] - 1, n - 1)); write("b063994.txt", n, " ", a) ) \\ Harry J. Smith, Sep 05 2009
-
PARI
a(n)=my(f=factor(n)[,1]);prod(i=1,#f,gcd(f[i]-1,n-1)) \\ Charles R Greathouse IV, Dec 10 2013
-
Python
def a(n): if n == 1: return 1 return len([1 for witness in range(1,n) if pow(witness, n - 1, n) == 1]) [a(n) for n in range(1, 100)]
Formula
a(p^m) = p-1 and a(2p^m) = 1 for prime p and integer m > 0. - Thomas Ordowski, Dec 15 2013
a(n) = Sum_{k=1..n}(floor((k^(n-1)-1)/n)-floor((k^(n-1)-2)/n)). - Anthony Browne, May 11 2016
Extensions
More terms from Robert G. Wilson v, Sep 21 2001
Comments