cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A063994 a(n) = Product_{primes p dividing n } gcd(p-1, n-1).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 6, 1, 2, 1, 10, 1, 12, 1, 4, 1, 16, 1, 18, 1, 4, 1, 22, 1, 4, 1, 2, 3, 28, 1, 30, 1, 4, 1, 4, 1, 36, 1, 4, 1, 40, 1, 42, 1, 8, 1, 46, 1, 6, 1, 4, 3, 52, 1, 4, 1, 4, 1, 58, 1, 60, 1, 4, 1, 16, 5, 66, 1, 4, 3, 70, 1, 72, 1, 4, 3, 4, 1, 78, 1, 2, 1, 82, 1, 16, 1, 4, 1, 88, 1, 36, 1
Offset: 1

Views

Author

N. J. A. Sloane, Sep 18 2001

Keywords

Comments

a(n) = number of bases b modulo n for which b^{n-1} == 1 (mod n).
a(A209211(n)) = 1. - Reinhard Zumkeller, Mar 02 2013
A049559(n) divides a(n) divides A000010(n). - Thomas Ordowski, Dec 14 2013
Note that a(n) = phi(n) iff n = 1 or n is prime or n is Carmichael number A002997. - Thomas Ordowski, Dec 17 2013

Crossrefs

Programs

  • Haskell
    a063994 n = product $ map (gcd (n - 1) . subtract 1) $ a027748_row n
    -- Reinhard Zumkeller, Mar 02 2013
  • Mathematica
    f[n_] := Times @@ GCD[n - 1, First /@ FactorInteger@ n - 1]; f[1] = 1; Array[f, 92] (* Robert G. Wilson v, Aug 08 2011 *)
  • PARI
    for (n=1, 1000, f=factor(n)~; a=1; for (i=1, length(f), a*=gcd(f[1, i] - 1, n - 1)); write("b063994.txt", n, " ", a) ) \\ Harry J. Smith, Sep 05 2009
    
  • PARI
    a(n)=my(f=factor(n)[,1]);prod(i=1,#f,gcd(f[i]-1,n-1)) \\ Charles R Greathouse IV, Dec 10 2013
    
  • Python
    def a(n):
        if n == 1: return 1
        return len([1 for witness in range(1,n) if pow(witness, n - 1, n) == 1])
    [a(n) for n in range(1, 100)]
    

Formula

a(p^m) = p-1 and a(2p^m) = 1 for prime p and integer m > 0. - Thomas Ordowski, Dec 15 2013
a(n) = Sum_{k=1..n}(floor((k^(n-1)-1)/n)-floor((k^(n-1)-2)/n)). - Anthony Browne, May 11 2016

Extensions

More terms from Robert G. Wilson v, Sep 21 2001