cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064021 Squares k^2 such that reverse(k)^2 = reverse(k^2), excluding squares of palindromes.

Original entry on oeis.org

144, 169, 441, 961, 10404, 10609, 12544, 12769, 14884, 40401, 44521, 48841, 90601, 96721, 1004004, 1006009, 1022121, 1024144, 1026169, 1042441, 1044484, 1062961, 1212201, 1214404, 1216609, 1236544, 1238769, 1256641, 1258884, 1442401
Offset: 1

Views

Author

Harvey P. Dale, Sep 18 2001

Keywords

Comments

Subsequence of A035090. - M. F. Hasler, Mar 22 2011

Examples

			1026169 is included because its square root, 1013, when reversed (i.e., 3101) and squared yields 9616201.
Squares < 10 and 121 = 11^2, 484 = 22^2, ... are not in the sequence, since they are the square of a palindrome. - _M. F. Hasler_, Mar 22 2011
		

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, pp. 124, 127 (Rev. ed. 1997).

Crossrefs

Programs

  • Mathematica
    Cases[Range[2000]^2, k_ /; Mod[k, 10] != 0 && IntegerDigits[k] != Reverse[IntegerDigits[k]] && FromDigits[Reverse[IntegerDigits[Sqrt[k]]]]^2 == FromDigits[Reverse[IntegerDigits[k]]]] (* Jean-François Alcover, Mar 22 2011 *)
    Select[Range[1250]^2,!PalindromeQ[Sqrt[#]]&&IntegerReverse[#] == IntegerReverse[ Sqrt[#]]^2 &&Mod[#,10]!=0&] (* Harvey P. Dale, Jul 01 2022 *)
  • PARI
    Rev(x)= { local(d,r); r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); return(r) }
    { n=0; for (m=1, 10^9, if (m%10==0, next); x=m^2; r=Rev(x); if (r==x, next); if (r==Rev(m)^2, write("b064021.txt", n++, " ", x); if (n==750, break)) ) } \\ Harry J. Smith, Sep 06 2009

Formula

{n = A000290(k) such that A004086(A000290(k)) = A000290(A004086(k)) and k is not in A002113}. - Jonathan Vos Post, May 02 2011
a(n) = A140212(n)^2. - Giovanni Resta, Jun 22 2018