A073073 Numbers m such that the minimal value of abs(2^m - 3^x) > 0 is prime (i.e., m such that A064024(m) is prime).
4, 5, 6, 7, 8, 11, 14, 21, 25, 89, 97, 110, 116, 121, 177, 235, 294, 784, 1039, 1454, 1629, 3460, 5611, 6174, 7133, 10922, 12287, 12581, 16311
Offset: 1
Crossrefs
Cf. A064024.
Programs
-
Mathematica
Do[k = 0; While[Abs[2^n - 3^k] > Abs[2^n - 3^(k + 1)], k++ ]; If[PrimeQ[Abs[2^n - 3^k]], Print[n]], {n, 1, 4000}] (* Stefan Steinerberger, Jan 22 2006 *)
Extensions
a(19)-a(22) from Stefan Steinerberger, Jan 22 2006
a(23)-a(29) from Jinyuan Wang, Apr 05 2020