cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064046 Number of length 6 walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.

Original entry on oeis.org

0, 5, 70, 285, 740, 1525, 2730, 4445, 6760, 9765, 13550, 18205, 23820, 30485, 38290, 47325, 57680, 69445, 82710, 97565, 114100, 132405, 152570, 174685, 198840, 225125, 253630, 284445, 317660, 353365, 391650, 432605, 476320, 522885, 572390
Offset: 0

Views

Author

Henry Bottomley, Aug 23 2001

Keywords

Crossrefs

Numbers of walks of length 0, 1, 2, 3, 4 and 5 are A000012, A000004, A001477, A000004, A049450 and A000004.

Programs

  • Magma
    [5*n*(3*n^2-3*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
  • Mathematica
    LinearRecurrence[{4,-6,4,-1},{0,5,70,285},40] (* Harvey P. Dale, Dec 02 2012 *)

Formula

a(n) = 5*n*(3*n^2 - 3*n + 1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A064045(n, 3).
a(n) = a(n-1) + 15*A049450(n-1) + 30*A001477(n-1) + 5*A000012(n-1).
G.f.: 5*x*(7*x^2 + 10*x + 1)/(x-1)^4. [Colin Barker, Jul 21 2012]