A064046 Number of length 6 walks on an n-dimensional hypercubic lattice starting and finishing at the origin and staying in the nonnegative part.
0, 5, 70, 285, 740, 1525, 2730, 4445, 6760, 9765, 13550, 18205, 23820, 30485, 38290, 47325, 57680, 69445, 82710, 97565, 114100, 132405, 152570, 174685, 198840, 225125, 253630, 284445, 317660, 353365, 391650, 432605, 476320, 522885, 572390
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[5*n*(3*n^2-3*n+1): n in [0..40]]; // Vincenzo Librandi, Jun 16 2011
-
Mathematica
LinearRecurrence[{4,-6,4,-1},{0,5,70,285},40] (* Harvey P. Dale, Dec 02 2012 *)
Formula
a(n) = 5*n*(3*n^2 - 3*n + 1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A064045(n, 3).
G.f.: 5*x*(7*x^2 + 10*x + 1)/(x-1)^4. [Colin Barker, Jul 21 2012]