cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064052 Not sqrt(n)-smooth: some prime factor of n is > sqrt(n).

Original entry on oeis.org

2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102
Offset: 1

Views

Author

Dean Hickerson, Aug 28 2001

Keywords

Comments

This set (S say) has density d(S) = Log(2) - Benoit Cloitre, Jun 12 2002
Finch defines a positive integer N to be "jagged" if its largest prime factor is > sqrt(N). - Frank Ellermann, Apr 21 2011

Examples

			9=3*3 is not "jagged", but 10=5*2 is "jagged": 5 > sqrt(10).
20=5*2*2 is "jagged", but not squarefree, cf. A005117.
		

References

  • Steven R. Finch, Mathematical Constants, 2003, chapter 2.21.

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 2, n <= 102, n++, f = FactorInteger[n][[-1, 1]]; If[f > Sqrt[n], Sow[n]]]][[2, 1]] (* Jean-François Alcover, May 16 2014 *)
  • PARI
    { n=0; for (m=2, 10^9, f=factor(m)~; if (f[1, length(f)]^2 > m, write("b064052.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 06 2009
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A064052(n):
        def f(x): return int(n+x-sum(primepi(x//i)-primepi(i) for i in range(1,isqrt(x)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Sep 01 2024