A242493 a(n) is the number of not-sqrt-smooth numbers ("jagged" numbers) not exceeding n. This is the counting function of A064052.
0, 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 15, 16, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 30, 31, 32, 32, 32, 32, 33, 34, 35, 35, 36, 36, 37, 38, 39, 39, 40, 41, 41, 41, 42, 43, 44, 45
Offset: 1
Keywords
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 166.
- Daniel H. Greene and Donald E. Knuth, Mathematics for the Analysis of Algorithms, 3rd ed., Birkhäuser, 1990, pp. 95-98.
Programs
-
Mathematica
jaggedQ[n_] := jaggedQ[n] = (f = FactorInteger[n][[All, 1]]; s = Sqrt[n]; Count[f, p_ /; p > s] > 0); a[n_] := ( For[ cnt = 0; j = 2, j <= n, j++, If[jaggedQ[j], cnt++]]; cnt); Table[a[n], {n, 1, 100}]
-
Python
from math import isqrt from sympy import primepi def A242493(n): return sum(primepi(n//i)-primepi(i) for i in range(1,isqrt(n)+1)) # Chai Wah Wu, Sep 01 2024
Formula
From Ridouane Oudra, Nov 07 2019: (Start)
a(n) = Sum_{i=1..floor(sqrt(n))} (pi(floor(n/i)) - pi(i)).
a(n) = Sum_{p<=sqrt(n)} (p-1) + Sum_{sqrt(n)
a(n) = n - A064775(n). (End)
a(n) ~ log(2)*n - A153810 * n/log(n) - A242610 * n/log(n)^2 + O(n/log(n)^3) (Greene and Knuth, 1990). - Amiram Eldar, Apr 15 2021
A033677 Smallest divisor of n >= sqrt(n).
1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 4, 13, 7, 5, 4, 17, 6, 19, 5, 7, 11, 23, 6, 5, 13, 9, 7, 29, 6, 31, 8, 11, 17, 7, 6, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 8, 7, 10, 17, 13, 53, 9, 11, 8, 19, 29, 59, 10, 61, 31, 9, 8, 13, 11, 67, 17, 23, 10, 71, 9, 73, 37, 15, 19, 11, 13, 79, 10
Offset: 1
Comments
a(n) is the smallest k such that n appears in the k X k multiplication table and A027424(k) is the number of n with a(n) <= k.
a(n) is the largest central divisor of n. Right border of A207375. - Omar E. Pol, Feb 26 2019
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence selects the smallest superior divisor of n. - Gus Wiseman, Feb 19 2021
a(p) = p for p a prime or 1, these are also the record high points in this sequence. - Charles Kusniec, Aug 26 2022
a(n^4+n^2+1) = n^2+n+1 (see A033676). - Jianing Song, Oct 23 2022
Examples
From _Gus Wiseman_, Feb 19 2021: (Start) The divisors of 36 are {1,2,3,4,6,9,12,18,36}. Of these {1,2,3,4,6} are inferior and {6,9,12,18,36} are superior, so a(36) = 6. The divisors of 40 are {1,2,4,5,8,10,20,40}. Of these {1,2,4,5} are inferior and {8,10,20,40} are superior, so a(40) = 8. (End)
References
- G. Tenenbaum, pp. 268ff of R. L. Graham et al., eds., Mathematics of Paul Erdős I.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
The lower central divisor is A033676.
The strictly superior case is A140271.
Leftmost column of A161908 (superior divisors).
Rightmost column of A207375 (central divisors).
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A070038 adds up superior divisors.
A341676 selects the unique superior prime divisor.
Programs
-
Haskell
a033677 n = head $ dropWhile ((< n) . (^ 2)) [d | d <- [1..n], mod n d == 0] -- Reinhard Zumkeller, Oct 20 2011
-
Maple
A033677 := proc(n) n/A033676(n) ; end proc:
-
Mathematica
Table[Select[Divisors[n], # >= Sqrt[n] &, 1] // First, {n, 80}] (* Jean-François Alcover, Apr 01 2011 *)
-
PARI
A033677(n) = {local(d); d=divisors(n); d[length(d)\2+1]} \\ Michael B. Porter, Feb 26 2010
-
Python
from sympy import divisors def A033677(n): d = divisors(n) return d[len(d)//2] # Chai Wah Wu, Apr 05 2021
Formula
a(n) = n/A033676(n).
a(n) = A162348(2n). - Daniel Forgues, Sep 29 2014
A060775 The greatest divisor d|n such that d < n/d, with a(1) = 1.
1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 3, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 3, 4, 1, 5, 1, 4, 3, 2, 5, 4, 1, 2, 3, 5, 1, 6, 1, 4, 5, 2, 1, 6, 1, 5, 3, 4, 1, 6, 5, 7, 3, 2, 1, 6, 1, 2, 7, 4, 5, 6, 1, 4, 3, 7, 1, 8, 1, 2, 5, 4, 7, 6, 1, 8, 3, 2, 1, 7, 5, 2, 3
Offset: 1
Comments
Also: Largest divisor of n which is less than sqrt(n).
If n is not a square, then a(n) = A033676(n), else a(n) is strictly smaller than A033676(n) = sqrt(n) (except for a(1) = 1). - M. F. Hasler, Sep 20 2011
Record values occur for n = k * (k+1), for which a(n) = k. - Franklin T. Adams-Watters, May 01 2015
If we define a divisor d|n to be strictly inferior if d < n/d, then strictly inferior divisors are counted by A056924 and listed by A341674. This sequence gives the greatest strictly inferior divisor, which may differ from the lower central divisor A033676. Central divisors are listed by A207375. - Gus Wiseman, Feb 28 2021
Examples
n = 252, D = {1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252}, 18 divisors, the 9th is 14, so a(252) = 14. From _Gus Wiseman_, Feb 28 2021: (Start) The strictly inferior divisors of selected n: n = 1 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 ----------------------------------------------------------------- {} 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 4 3 3 4 3 3 5 3 3 7 3 3 5 6 7 4 5 10 4 4 13 5 4 6 6 6 6 6 5 8 9 11 12 7 6 10 8 14 10 12 15 (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (terms n = 2..1000 from Harry J. Smith)
Crossrefs
The weakly inferior version is A033676.
Positions of first appearances are A180291.
These are the row-maxima of A341674.
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A070039 adds up strictly inferior divisors.
A207375 lists central divisors.
A333805 counts strictly inferior odd divisors.
A333806 counts strictly inferior prime divisors.
A341596 counts strictly inferior squarefree divisors.
A341677 counts strictly inferior prime-power divisors.
Programs
-
Maple
with(numtheory): a:= n-> max(select(d-> is(d=1 or d
Alois P. Heinz, Jan 29 2018 -
Mathematica
Table[Part[Divisors[w], Floor[DivisorSigma[0, w]/2]], {w, 1, 256}] Table[If[n==1,1,Max[Select[Divisors[n],#
Gus Wiseman, Feb 28 2021 *) -
PARI
A060775(n)=if(n>1,divisors(n)[numdiv(n)\2],1) \\ M. F. Hasler, Sep 21 2011
Formula
a(n) = max { d: d|n and d < sqrt(n) or d = 1 }, where "|" means "divides". [Corrected by M. F. Hasler, Apr 03 2019]
Extensions
a(1) = 1 added (to preserve the relation a(n) | n) by Franklin T. Adams-Watters, Jan 27 2018
Edited by M. F. Hasler, Apr 03 2019
Name changed by Gus Wiseman, Feb 28 2021 (was: Lower central (median) divisor of n, with a(1) = 1.)
A048098 Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.
1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195
Offset: 1
Comments
A006530(a(n))^2 <= a(n). - Reinhard Zumkeller, Oct 12 2011
This set (say S) has density d(S) = 1-log(2) and multiplicative density m(S) = 1-exp(-Gamma). Multiplicative density: let A be a set of numbers, A(x) = { k in A | gpf(k) <=x } where gpf(k) denotes the greatest prime factor of k and let m(x)(A) = Product_{p<=x} (1 - 1/p)*Sum_{k in A(x)} 1/k. If lim_{x->infinity} m(x)(A) exists = m(A), this limit is called "multiplicative density" of A (Erdős and Davenport, 1951). - Benoit Cloitre, Jun 12 2002
Links
- T. D. Noe and William A. Tedeschi, Table of n, a(n) for n = 1..10000 (first 1000 terms computed by T. D. Noe)
- H. Davenport and P. Erdős, On sequences of positive integers, J. Indian Math. Soc. 15 (1951), pp. 19-24.
- Eric Weisstein's World of Mathematics, Greatest Prime Factor
- Eric Weisstein's World of Mathematics, Round Number
Crossrefs
Programs
-
Haskell
a048098 n = a048098_list !! (n-1) a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x] -- Reinhard Zumkeller, Oct 12 2011
-
Mathematica
gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)
-
PARI
print1(1, ", ");for(n=2, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))
-
Python
from sympy import factorint def ok(n): return n == 1 if n < 2 else max(factorint(n))**2 <= n print([k for k in range(196) if ok(k)]) # Michael S. Branicky, Dec 22 2021
-
Python
from math import isqrt from sympy import primepi def A048098(n): def f(x): return int(n+sum(primepi(x//i)-primepi(i) for i in range(1,isqrt(x)+1))) def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax return bisection(f) # Chai Wah Wu, Sep 01 2024
Extensions
More terms from James Sellers, Apr 22 2000
Edited by Charles R Greathouse IV, Nov 08 2010
A063539 Numbers n that are sqrt(n-1)-smooth: largest prime factor of n (=A006530(n)) < sqrt(n).
1, 8, 12, 16, 18, 24, 27, 30, 32, 36, 40, 45, 48, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 175, 176, 180, 182, 189, 192, 195, 196
Offset: 1
Keywords
Comments
Sometimes (Weisstein) called the "usual numbers" as opposed to what Greene and Knuth define as "unusual numbers" (A063538), which turn out to not be so unusual after all (Greene and Knuth 1990, Finch 2001). - Jonathan Vos Post, Sep 11 2010
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence lists numbers without a superior prime divisor, which is unique (A341676) when it exists. For example, the set of superior prime divisors of each n starts: {},{2},{3},{2},{5},{3},{7},{},{3},{5},{11},{},{13},{7}. The positions of empty sets give the sequence. - Gus Wiseman, Feb 24 2021
As Jonathan Vos Post's comment suggests, the sqrt(n-1)-smooth numbers are asymptotically less dense than their "unusual" complement. This is part of a larger picture of "typical" relative sizes of a number's prime factors: see, for example, the medians of the n-th smallest prime factors of the positive integers in A281889. - Peter Munn, Mar 03 2021
Examples
a(100) = 360; a(1000) = 3744; a(10000) = 37665; a(100000)=375084; a(10^6) = 3697669; a(10^7) = 36519633; a(10^8) = 360856296; a(10^9) = 3571942311; a(10^10) = 35410325861; a(10^11) = 351498917129. - _Giovanni Resta_, Apr 12 2020
References
- Greene, D. H. and Knuth, D. E., Mathematics for the Analysis of Algorithms, 3rd ed. Boston, MA: Birkhäuser, pp. 95-98, 1990.
Links
- N. J. A. Sloane, Table of a(n) for n = 1..10622 [Extending and correcting earlier b-files from T. D. Noe and Marius A. Burtea]
- M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM, ITEM 29
- Steven Finch, "RE: Unusual Numbers.", Aug 27 2001.
- Hugo Pfoertner, Illustration of deviation from linear fit 3.7642*n, (2020).
- Hugo Pfoertner, Illustration of relative error of asymptotic approximation, (2020).
- Project Euler, Problem 668: Square root smooth numbers
- V. Ramaswami, On the number of positive integers less than x and free of prime divisors greater than x^c, Bull. Amer. Math. Soc. 55 (1949), 1122-1127.
- Eric W. Weisstein, Rough Number. [From _Jonathan Vos Post_, Sep 11 2010]
- Wikipedia, Dickman function
Crossrefs
Complement of A063538.
Cf. A006530.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.
Positions of zeros in A341591.
A001222 counts prime-power divisors.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A051283 lists numbers without a superior prime-power divisor.
A056924 counts strictly superior (or strictly inferior) divisors.
A059172 lists numbers without a superior squarefree divisor.
A063962 counts inferior prime divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341642 counts strictly superior prime divisors.
Programs
-
Magma
[1] cat [m:m in [2..200]| Max(PrimeFactors(m)) lt Sqrt(m) ]; // Marius A. Burtea, May 08 2019
-
Maple
N:= 1000: # to get all terms <= N Primes:= select(isprime, [2, seq(2*i+1, i=1..floor((N-1)/2))]): S:= {$1..N} minus {seq(seq(m*p, m = 1 .. min(p, N/p)), p=Primes)}: sort(convert(S, list)); # Robert Israel, Sep 02 2015
-
Mathematica
Prepend[Select[Range[192], FactorInteger[#][[-1, 1]] < Sqrt[#] &], 1] (* Ivan Neretin, Sep 02 2015 *)
-
Python
from math import isqrt from sympy import primepi def A063539(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+primepi(x//(y:=isqrt(x)))+sum(primepi(x//i)-primepi(i) for i in range(1,y))) return bisection(f,n,n) # Chai Wah Wu, Oct 05 2024
Formula
From Hugo Pfoertner, Apr 02 - Apr 12 2020: (Start)
For small n (e.g. n < 10000) a(n) can apparently be approximated by 3.7642*n.
Asymptotically, the number of sqrt(n)-smooth numbers < x is known to be (1-log(2))*x + O(x/log(x)), see Ramaswami (1949).
n = (1-log(2))*a(n) - 0.59436*a(n)/log(a(n)) is a fitted approximation. (End)
However, it is known that this fit only leads to an increase of accuracy in the range up to a(10^11). The improvement in accuracy suggested by the plot of the relative error for even larger n does not occur. For larger n the behavior of the error term O(x/log(x)) is not known. - Hugo Pfoertner, Nov 12 2023
A161906 Triangle read by rows in which row n lists the divisors of n that are <= sqrt(n).
1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 1, 2, 1, 1, 2, 3, 1, 1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 1, 1, 2, 3, 4, 1, 5, 1, 2, 1, 3, 1, 2, 4, 1, 1, 2, 3, 5, 1, 1, 2, 4, 1, 3, 1, 2, 1, 5, 1, 2, 3, 4, 6, 1, 1, 2, 1, 3, 1, 2, 4, 5, 1, 1, 2, 3, 6, 1, 1, 2, 4, 1, 3, 5, 1, 2, 1, 1, 2, 3
Offset: 1
Comments
If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by this sequence. - Gus Wiseman, Mar 08 2021
Examples
Triangle begins: 1....... 1; 2....... 1; 3....... 1; 4..... 1,2; 5....... 1; 6..... 1,2; 7....... 1; 8..... 1,2; 9..... 1,3; 10..... 1,2; 11....... 1; 12... 1,2,3; 13....... 1; 14..... 1,2; 15..... 1,3; 16... 1,2,4;
Links
- Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened
Crossrefs
Initial terms are A000012.
Final terms are A033676.
Row lengths are A038548 (number of inferior divisors).
Row sums are A066839 (sum of inferior divisors).
The prime terms are counted by A063962.
The odd terms are counted by A069288.
Row products are A072499.
Row LCMs are A072504.
The superior version is A161908.
The squarefree terms are counted by A333749.
The prime-power terms are counted by A333750.
The strictly superior version is A341673.
The strictly inferior version is A341674.
A056924 count strictly superior (or strictly inferior divisors).
A207375 lists central divisors.
- Inferior: A217581.
- Superior: A033677, A051283, A059172, A063538, A063539, A070038, A116882, A116883, A341591, A341592, A341593, A341675, A341676.
Programs
-
Haskell
a161906 n k = a161906_tabf !! (n-1) !! (k-1) a161906_row n = a161906_tabf !! (n-1) a161906_tabf = zipWith (\m ds -> takeWhile ((<= m) . (^ 2)) ds) [1..] a027750_tabf' -- Reinhard Zumkeller, Jun 24 2015, Mar 08 2013
-
Mathematica
div[n_] := Select[Divisors[n], # <= Sqrt[n] &]; div /@ Range[48] // Flatten (* Amiram Eldar, Nov 13 2020 *)
-
PARI
row(n) = select(x->(x<=sqrt(n)), divisors(n)); \\ Michel Marcus, Nov 13 2020
Extensions
More terms from Sean A. Irvine, Nov 29 2010
A116882 A number k is included if (highest odd divisor of k)^2 <= k.
1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1088, 1152, 1216, 1280, 1344, 1408
Offset: 1
Comments
Also k is included if (and only if) the greatest power of 2 dividing k is >= the highest odd divisor of k. All terms of the sequence are even besides the 1.
Equivalently, positive integers of the form k*2^m, where odd k <= 2^m. - Thomas Ordowski, Oct 19 2014
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence consists of 1 and all numbers without a superior odd divisor. - Gus Wiseman, Feb 18 2021
Numbers k such that A006519(k) >= A000265(k), with equality only when k = 1. - Amiram Eldar, Jan 24 2023
Examples
40 = 8 * 5, where 8 is highest power of 2 dividing 40 and 5 is the highest odd dividing 40. 8 is >= 5 (so 5^2 <= 40), so 40 is in the sequence.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 38.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Amelia Carolina Sparavigna, Discussion of the groupoid of Proth numbers (OEIS A080075), Politecnico di Torino, Italy (2019).
Crossrefs
Programs
-
Mathematica
f[n_] := Select[Divisors[n], OddQ[ # ] &][[ -1]]; Insert[Select[Range[2, 1500], 2^FactorInteger[ # ][[1]][[2]] > f[ # ] &], 1, 1] (* Stefan Steinerberger, Apr 10 2006 *) q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Select[Range[1500], q] (* Amiram Eldar, Jan 24 2023 *)
-
PARI
isok(n) = vecmax(select(x->((x % 2)==1), divisors(n)))^2 <= n; \\ Michel Marcus, Sep 06 2016
-
PARI
isok(n) = 2^(valuation(n,2)*2) >= n \\ Jeppe Stig Nielsen, Feb 19 2019
-
Python
from itertools import count, islice def A116882_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:(n&-n)**2>=n,count(max(startvalue,1))) A116882_list = list(islice(A116882_gen(),20)) # Chai Wah Wu, May 17 2023
Formula
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1 + (3/4) * Sum_{k>=1} H(2^k-1)/2^k = 2.3388865091..., where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 24 2023
Extensions
More terms from Stefan Steinerberger, Apr 10 2006
A069288 Number of odd divisors of n <= sqrt(n).
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 3, 1, 1, 3, 1, 2, 2, 1, 1, 2, 3, 1, 2, 1, 1, 3, 1, 2, 2, 1, 2, 3, 1, 1, 3, 2, 1, 2, 1, 1, 4
Offset: 1
Keywords
Comments
Examples
From _Gus Wiseman_, Feb 11 2021: (Start) The inferior odd divisors for selected n are the columns below: n: 1 9 30 90 225 315 630 945 1575 2835 4410 3465 8190 6930 -------------------------------------------------------------------- 1 3 5 9 15 15 21 27 35 45 63 55 65 77 1 3 5 9 9 15 21 25 35 49 45 63 63 1 3 5 7 9 15 21 27 45 35 45 55 1 3 5 7 9 15 21 35 33 39 45 1 3 5 7 9 15 21 21 35 35 1 3 5 7 9 15 15 21 33 1 3 5 7 9 11 15 21 1 3 5 7 9 13 15 1 3 5 7 9 11 1 3 5 7 9 1 3 5 7 1 3 5 1 3 1 (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Positions of first appearances are A334853.
A055396 selects the least prime index.
A061395 selects the greatest prime index.
- Odd -
A026424 lists numbers with odd Omega.
A027193 counts odd-length partitions.
- Inferior divisors -
A033676 selects the greatest inferior divisor.
A033677 selects the least superior divisor.
A038548 counts inferior divisors.
A060775 selects the greatest strictly inferior divisor.
A063538 lists numbers with a superior prime divisor.
A063539 lists numbers without a superior prime divisor.
A063962 counts inferior prime divisors.
A064052 lists numbers with a properly superior prime divisor.
A140271 selects the least properly superior divisor.
A217581 selects the greatest inferior divisor.
A333806 counts strictly inferior prime divisors.
Programs
-
Haskell
a069288 n = length $ takeWhile (<= a000196 n) $ a182469_row n -- Reinhard Zumkeller, Apr 05 2015
-
Mathematica
odn[n_]:=Count[Divisors[n],?(OddQ[#]&&#<=Sqrt[n ]&)]; Array[odn,100] (* _Harvey P. Dale, Nov 04 2017 *)
-
PARI
a(n) = my(ir = sqrtint(n)); sumdiv(n, d, (d % 2) * (d <= ir)); \\ Michel Marcus, Jan 14 2014
Formula
G.f.: Sum_{n>=1} 1/(1-q^(2*n-1)) * q^((2*n-1)^2). [Joerg Arndt, Mar 04 2010]
A161908 Array read by rows in which row n lists the divisors of n that are >= sqrt(n).
1, 2, 3, 2, 4, 5, 3, 6, 7, 4, 8, 3, 9, 5, 10, 11, 4, 6, 12, 13, 7, 14, 5, 15, 4, 8, 16, 17, 6, 9, 18, 19, 5, 10, 20, 7, 21, 11, 22, 23, 6, 8, 12, 24, 5, 25, 13, 26, 9, 27, 7, 14, 28, 29, 6, 10, 15, 30, 31, 8, 16, 32, 11, 33, 17, 34, 7, 35, 6, 9, 12, 18, 36, 37, 19, 38, 13, 39, 8, 10, 20, 40, 41, 7, 14, 21, 42, 43, 11, 22, 44, 9, 15, 45, 23, 46, 47, 8, 12, 16
Offset: 1
Comments
T(n,A038548(n)) = n. - Reinhard Zumkeller, Mar 08 2013
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by this sequence. - Gus Wiseman, Mar 08 2021
Examples
Array begins: 1; 2; 3; 2,4; 5; 3,6; 7; 4,8; 3,9; 5,10; 11; 4,6,12; 13; 7,14; 5,15; 4,8,16;
Links
- Reinhard Zumkeller, Rows n = 1..1000 of triangle, flattened
Crossrefs
Final terms are A000027.
Initial terms are A033677.
Row lengths are A038548 (number of superior divisors).
Row sums are A070038 (sum of superior divisors).
The inferior version is A161906.
The prime terms are counted by A341591.
The squarefree terms are counted by A341592.
The prime-power terms are counted by A341593.
The strictly superior version is A341673.
The strictly inferior version is A341674.
The odd terms are counted by A341675.
A056924 counts strictly superior (or strictly inferior divisors).
A207375 lists central divisors.
Programs
-
Haskell
a161908 n k = a161908_tabf !! (n-1) !! (k-1) a161908_row n = a161908_tabf !! (n-1) a161908_tabf = zipWith (\x ds -> reverse $ map (div x) ds) [1..] a161906_tabf -- Reinhard Zumkeller, Mar 08 2013
-
Mathematica
Table[Select[Divisors[n],#>=Sqrt[n]&],{n,100}]//Flatten (* Harvey P. Dale, Jan 01 2021 *)
Extensions
More terms from Sean A. Irvine, Nov 29 2010
A063962 Number of distinct prime divisors of n that are <= sqrt(n).
0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 1, 1, 1, 1, 0, 3, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 1, 2, 1, 0, 2, 1, 2, 1, 1, 0, 2, 1, 2, 1, 1, 0, 3, 0, 1, 2, 1, 1, 2, 0, 1, 1, 3, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 3
Offset: 1
Keywords
Comments
For all primes p: a(p) = 0 (not marked) and for k > 1 a(p^k) = 1.
a(1) = 0 and for n > 0 a(n) is the number of marks when applying the sieve of Eratosthenes where a stage for prime p starts at p^2.
If we define a divisor d|n to be inferior if d <= n/d, then inferior divisors are counted by A038548 and listed by A161906. This sequence counts inferior prime divisors. - Gus Wiseman, Feb 25 2021
Examples
a(33) = a(3*11) = 1, as 3^2 = 9 < 33 and 11^2 = 121 > 33. From _Gus Wiseman_, Feb 25 2021: (Start) The a(n) inferior prime divisors (columns) for selected n: n = 3 8 24 3660 390 3570 87780 --------------------------------- {} 2 2 2 2 2 2 3 3 3 3 3 5 5 5 5 13 7 7 17 11 19 (End)
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Zeros are at indices A008578.
Dominates A333806 (the strictly inferior version).
The superior version is A341591.
The strictly superior version is A341642.
A033677 selects the smallest superior divisor.
A038548 counts inferior divisors.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341676 lists the unique superior prime divisors.
Programs
-
Haskell
a063962 n = length [p | p <- a027748_row n, p ^ 2 <= n] -- Reinhard Zumkeller, Apr 05 2012
-
Maple
with(numtheory): a:=proc(n) local c,F,f,i: c:=0: F:=factorset(n): f:=nops(F): for i from 1 to f do if F[i]^2<=n then c:=c+1 else c:=c: fi od: c; end: seq(a(n),n=1..105); # Emeric Deutsch
-
Mathematica
Join[{0},Table[Count[Transpose[FactorInteger[n]][[1]],?(#<=Sqrt[n]&)],{n,2,110}]] (* _Harvey P. Dale, Mar 26 2015 *)
-
PARI
{ for (n=1, 1000, f=factor(n)~; a=0; for (i=1, length(f), if (f[1, i]^2<=n, a++, break)); write("b063962.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 04 2009
Formula
G.f.: Sum_{k>=1} x^(prime(k)^2) / (1 - x^prime(k)). - Ilya Gutkovskiy, Apr 04 2020
a(A002110(n)) = n for n > 2. - Gus Wiseman, Feb 25 2021
Extensions
Revised definition from Emeric Deutsch, Jan 31 2006
Comments