cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A064775 Number of positive integers k <= n such that all prime divisors of k are <= sqrt(k).

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 7, 7, 7, 7, 7, 7, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 16, 17, 18, 18, 18, 18, 19, 19, 20, 20, 20, 20, 21, 21, 21, 22, 23, 23, 23, 23, 23, 23, 24, 24, 25, 25, 25, 26, 26, 26, 26
Offset: 1

Views

Author

Benoit Cloitre, May 11 2002

Keywords

Comments

A048098(n) is the n-th number k such that all prime divisors of k are <= sqrt(k).

Examples

			Below 28, only k=27,25,24,18,16,12,9,8,4,1 have all their prime divisors less than or equal to sqrt(k), hence a(28)=10. To obtain from A048098(n): A048098(10) = 27 <= 28 < A048098(11)=30, hence a(28)=10.
		

References

  • D. P. Parent, Exercices de théorie des nombres, Les grands classiques, Gauthier-Villars, Edition Jacques Gabay, p. 17.

Crossrefs

The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Programs

  • Magma
    [1] cat [#[k:k in [1..n]|forall{p:p in PrimeDivisors(k)| p le Sqrt(k)}]: n in [2..80]]; // Marius A. Burtea, Nov 08 2019
    
  • PARI
    a(n)=n-sum(k=1,sqrtint(n),(k-1)*isprime(k)) - sum(k=sqrtint(n)+1, n, floor(n/k)*isprime(k))
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A064775(n): return int(n+sum(primepi(i)-primepi(n//i) for i in range(1,isqrt(n)+1))) # Chai Wah Wu, Oct 05 2024

Formula

a(n) = n - (Sum_{p<=sqrt(n)} (p-1)) - Sum_{sqrt(n)A048098(k) <= n. Asymptotically: a(n) = (1-log(2))*n + O(n/log(n)).
From Ridouane Oudra, Nov 07 2019: (Start)
a(n) = n - Sum_{i=1..floor(sqrt(n))} (pi(floor(n/i)) - pi(i)).
a(n) = n - A242493(n). (End)

A242610 Decimal expansion of 1-gamma-gamma(1), a constant related to the asymptotic expansion of j(n), the counting function of "jagged" numbers, where gamma is Euler-Mascheroni constant and gamma(1) the first Stieltjes constant.

Original entry on oeis.org

4, 9, 5, 6, 0, 0, 1, 8, 0, 5, 8, 2, 1, 4, 3, 8, 6, 4, 2, 5, 4, 0, 7, 4, 2, 8, 5, 7, 9, 2, 4, 9, 8, 8, 8, 8, 0, 9, 5, 5, 7, 7, 0, 0, 2, 3, 9, 4, 4, 1, 4, 3, 5, 3, 7, 9, 3, 2, 3, 9, 3, 2, 4, 8, 5, 6, 5, 3, 3, 7, 0, 6, 7, 9, 3, 8, 4, 6, 8, 1, 3, 9, 4, 1, 1, 3, 9, 8, 6, 4, 9, 5, 3, 0, 9, 7, 2, 6, 5, 0
Offset: 0

Views

Author

Jean-François Alcover, May 19 2014

Keywords

Examples

			0.495600180582143864254074285792498888...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 166.
  • Ovidiu Furdui, Limits, Series, and Fractional Part Integrals: Problems in Mathematical Analysis, New York: Springer, 2013. See Problem 2.17, p. 102.

Crossrefs

Programs

  • Mathematica
    RealDigits[1 - EulerGamma - StieltjesGamma[1], 10, 100] // First

Formula

j(n) = log(2)*n - (1-gamma)*n/log(n) - (1-gamma-gamma(1))*n/log(n)^2 + O(n/log(n)^3).
Equals -Integral_{x=0..1} frac(1/x)*log(x) dx (Furdui, 2007 and 2013). - Amiram Eldar, Mar 26 2022
Equals Integral_{x=0..1} Integral_{y=0..1} frac(1/(x*y)) dx dy (Furdui, 2013, section 2.43, p. 106). - Amiram Eldar, Jul 31 2025
Showing 1-2 of 2 results.