cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A048098 Numbers k that are sqrt(k)-smooth: if p | k then p^2 <= k when p is prime.

Original entry on oeis.org

1, 4, 8, 9, 12, 16, 18, 24, 25, 27, 30, 32, 36, 40, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 121, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 169, 175, 176, 180, 182, 189, 192, 195
Offset: 1

Views

Author

Keywords

Comments

A006530(a(n))^2 <= a(n). - Reinhard Zumkeller, Oct 12 2011
This set (say S) has density d(S) = 1-log(2) and multiplicative density m(S) = 1-exp(-Gamma). Multiplicative density: let A be a set of numbers, A(x) = { k in A | gpf(k) <=x } where gpf(k) denotes the greatest prime factor of k and let m(x)(A) = Product_{p<=x} (1 - 1/p)*Sum_{k in A(x)} 1/k. If lim_{x->infinity} m(x)(A) exists = m(A), this limit is called "multiplicative density" of A (Erdős and Davenport, 1951). - Benoit Cloitre, Jun 12 2002

Crossrefs

Set union of A063539 and A001248.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Programs

  • Haskell
    a048098 n = a048098_list !! (n-1)
    a048098_list = [x | x <- [1..], a006530 x ^ 2 <= x]
    -- Reinhard Zumkeller, Oct 12 2011
    
  • Mathematica
    gpf[n_] := FactorInteger[n][[-1, 1]]; A048098 = {}; For[n = 1, n <= 200, n++, If[ gpf[n] <= Sqrt[n], AppendTo[ A048098, n] ] ]; A048098 (* Jean-François Alcover, Jan 26 2012 *)
  • PARI
    print1(1, ", ");for(n=2, 1000, if(vecmax(factor(n)[, 1])<=sqrt(n), print1(n, ", ")))
    
  • Python
    from sympy import factorint
    def ok(n):
        return n == 1 if n < 2 else max(factorint(n))**2 <= n
    print([k for k in range(196) if ok(k)]) # Michael S. Branicky, Dec 22 2021
    
  • Python
    from math import isqrt
    from sympy import primepi
    def A048098(n):
        def f(x): return int(n+sum(primepi(x//i)-primepi(i) for i in range(1,isqrt(x)+1)))
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        return bisection(f) # Chai Wah Wu, Sep 01 2024

Extensions

More terms from James Sellers, Apr 22 2000
Edited by Charles R Greathouse IV, Nov 08 2010

A063539 Numbers n that are sqrt(n-1)-smooth: largest prime factor of n (=A006530(n)) < sqrt(n).

Original entry on oeis.org

1, 8, 12, 16, 18, 24, 27, 30, 32, 36, 40, 45, 48, 50, 54, 56, 60, 63, 64, 70, 72, 75, 80, 81, 84, 90, 96, 98, 100, 105, 108, 112, 120, 125, 126, 128, 132, 135, 140, 144, 147, 150, 154, 160, 162, 165, 168, 175, 176, 180, 182, 189, 192, 195, 196
Offset: 1

Views

Author

N. J. A. Sloane, Aug 14 2001

Keywords

Comments

Sometimes (Weisstein) called the "usual numbers" as opposed to what Greene and Knuth define as "unusual numbers" (A063538), which turn out to not be so unusual after all (Greene and Knuth 1990, Finch 2001). - Jonathan Vos Post, Sep 11 2010
If we define a divisor d|n to be superior if d >= n/d, then superior divisors are counted by A038548 and listed by A161908. This sequence lists numbers without a superior prime divisor, which is unique (A341676) when it exists. For example, the set of superior prime divisors of each n starts: {},{2},{3},{2},{5},{3},{7},{},{3},{5},{11},{},{13},{7}. The positions of empty sets give the sequence. - Gus Wiseman, Feb 24 2021
As Jonathan Vos Post's comment suggests, the sqrt(n-1)-smooth numbers are asymptotically less dense than their "unusual" complement. This is part of a larger picture of "typical" relative sizes of a number's prime factors: see, for example, the medians of the n-th smallest prime factors of the positive integers in A281889. - Peter Munn, Mar 03 2021

Examples

			a(100) = 360; a(1000) = 3744; a(10000) = 37665; a(100000)=375084;
a(10^6) = 3697669; a(10^7) = 36519633; a(10^8) = 360856296;
a(10^9) = 3571942311; a(10^10) = 35410325861; a(10^11) = 351498917129. - _Giovanni Resta_, Apr 12 2020
		

References

  • Greene, D. H. and Knuth, D. E., Mathematics for the Analysis of Algorithms, 3rd ed. Boston, MA: Birkhäuser, pp. 95-98, 1990.

Crossrefs

Set difference of A048098 and A001248.
Complement of A063538.
Cf. A006530.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.
Positions of zeros in A341591.
A001221 counts prime divisors, with sum A001414.
A001222 counts prime-power divisors.
A033677 selects the smallest superior divisor.
A038548 counts superior (or inferior) divisors.
A051283 lists numbers without a superior prime-power divisor.
A056924 counts strictly superior (or strictly inferior) divisors.
A059172 lists numbers without a superior squarefree divisor.
A063962 counts inferior prime divisors.
A116882/A116883 list numbers with/without a superior odd divisor.
A161908 lists superior divisors.
A207375 lists central divisors.
A217581 selects the greatest inferior prime divisor.
A341642 counts strictly superior prime divisors.
A341676 gives unique superior prime divisors, with strict case A341643.
- Strictly inferior: A060775, A070039, A333805, A333806, A341596, A341674.

Programs

  • Magma
    [1] cat [m:m in [2..200]| Max(PrimeFactors(m)) lt Sqrt(m) ]; // Marius A. Burtea, May 08 2019
    
  • Maple
    N:= 1000: # to get all terms <= N
    Primes:= select(isprime, [2, seq(2*i+1, i=1..floor((N-1)/2))]):
    S:= {$1..N} minus {seq(seq(m*p, m = 1 .. min(p, N/p)), p=Primes)}:
    sort(convert(S, list)); # Robert Israel, Sep 02 2015
  • Mathematica
    Prepend[Select[Range[192], FactorInteger[#][[-1, 1]] < Sqrt[#] &], 1] (* Ivan Neretin, Sep 02 2015 *)
  • Python
    from math import isqrt
    from sympy import primepi
    def A063539(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+primepi(x//(y:=isqrt(x)))+sum(primepi(x//i)-primepi(i) for i in range(1,y)))
        return bisection(f,n,n) # Chai Wah Wu, Oct 05 2024

Formula

From Hugo Pfoertner, Apr 02 - Apr 12 2020: (Start)
For small n (e.g. n < 10000) a(n) can apparently be approximated by 3.7642*n.
Asymptotically, the number of sqrt(n)-smooth numbers < x is known to be (1-log(2))*x + O(x/log(x)), see Ramaswami (1949).
n = (1-log(2))*a(n) - 0.59436*a(n)/log(a(n)) is a fitted approximation. (End)
However, it is known that this fit only leads to an increase of accuracy in the range up to a(10^11). The improvement in accuracy suggested by the plot of the relative error for even larger n does not occur. For larger n the behavior of the error term O(x/log(x)) is not known. - Hugo Pfoertner, Nov 12 2023

A295084 Number of sqrt(n)-smooth numbers <= n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 3, 4, 7, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 16, 16, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 30, 31, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 36, 36, 36, 36, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 39, 39, 40
Offset: 1

Views

Author

Max Alekseyev, Nov 13 2017

Keywords

Comments

a(n) = number of positive integers m<=n such that A006530(m) <= sqrt(n).

Crossrefs

Cf. A048098 (indices of records), A063539, A241419.
The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Programs

  • Maple
    N:= 100: # to get a(1)..a(N)
    G:= [0,seq(max(numtheory:-factorset(n)),n=2..N)]:
    seq(nops(select(t -> t^2 <= n, G[1..n])),n=1..N); # Robert Israel, Nov 14 2017
    a:=[];
    for n from 1 to 100 do
       c:=0;
       for m from 1 to n do
          if A006530(m)^2 <= n then c:=c+1; fi; od:
    a:=[op(a),c];
    od:
    a; # (Included because variants of it will apply to related sequences) - N. J. A. Sloane, Apr 10 2020
  • PARI
    A295084(n) = my(r=n); forprime(p=sqrtint(n)+1,n, r-=n\p); r;
    
  • Python
    from math import isqrt
    from sympy import primerange
    def A295084(n): return int(n-sum(n//p for p in primerange(isqrt(n)+1,n+1))) # Chai Wah Wu, Oct 06 2024

Formula

a(n) = n - A241419(n).
If n is in A063539, then a(n)=a(n-1)+1; if n is in A001248, i.e., n=p^2 for prime p, then a(n)=a(n-1)+p; otherwise a(n)=a(n-1).
a(n) = (1 - log(2))*n + O(n/log(n)) as n -> infinity. - Robert Israel, Nov 14 2017

A333535 Card{ k<=n, k such that all prime divisors of k are < sqrt(k) }.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 17, 18, 18, 18, 18, 18, 18, 19, 19, 20, 20, 20, 21, 21, 21, 21, 21, 22, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25
Offset: 1

Views

Author

N. J. A. Sloane, Apr 10 2020

Keywords

Crossrefs

The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Programs

  • Maple
    a:=[];
    for n from 1 to 100 do
       c:=0;
       for m from 1 to n do
          if A006530(m)^2 < m then c:=c+1; fi; od:
    a:=[op(a),c];
    od:
    a;
    # second Maple program:
    a:= proc(n) option remember; `if`(n<2, 0, a(n-1)+
          `if`(max(map(i-> i[1], ifactors(n)[2]))^2Alois P. Heinz, Apr 10 2020
  • Mathematica
    a[1] = 0;
    a[n_] := a[n] = a[n-1] + Boole[Max[FactorInteger[n][[All, 1]]]^2 < n];
    Array[a, 100] (* Jean-François Alcover, Nov 01 2020 *)
  • Python
    from math import isqrt
    from sympy import primepi
    def A333535(n): return int(n-1-primepi(n//(m:=isqrt(n)))+sum(primepi(i)-primepi(n//i) for i in range(1,m))) # Chai Wah Wu, Oct 06 2024

A333536 Number of sqrt(n-1)-smooth numbers <= n.

Original entry on oeis.org

0, 1, 1, 1, 3, 3, 3, 4, 4, 7, 7, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 11, 11, 16, 17, 17, 17, 18, 18, 19, 19, 19, 19, 20, 20, 20, 20, 21, 21, 21, 21, 21, 22, 22, 22, 23, 23, 31, 31, 31, 31, 32, 32, 33, 33, 33, 33, 34, 34, 34, 35, 36, 36, 36, 36, 36, 36, 37, 37, 38, 38, 38, 39, 39, 39, 39, 39, 40, 41, 41, 41, 42
Offset: 1

Views

Author

N. J. A. Sloane, Apr 10 2020

Keywords

Crossrefs

The following are all different versions of sqrt(n)-smooth numbers: A048098, A063539, A064775, A295084, A333535, A333536.

Programs

  • Maple
    a:=[];
    for n from 1 to 100 do
       c:=0;
       for m from 1 to n do
          if A006530(m)^2 < n then c:=c+1; fi; od:
    a:=[op(a),c];
    od:
    a;

A242493 a(n) is the number of not-sqrt-smooth numbers ("jagged" numbers) not exceeding n. This is the counting function of A064052.

Original entry on oeis.org

0, 1, 2, 2, 3, 4, 5, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 13, 14, 15, 16, 16, 16, 17, 17, 18, 19, 19, 20, 20, 21, 22, 23, 23, 24, 25, 26, 26, 27, 28, 29, 30, 30, 31, 32, 32, 32, 32, 33, 34, 35, 35, 36, 36, 37, 38, 39, 39, 40, 41, 41, 41, 42, 43, 44, 45
Offset: 1

Views

Author

Jean-François Alcover, May 16 2014

Keywords

Comments

This sequence is different from shifted A072490, after 22 terms.

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, chapter 2.21, p. 166.
  • Daniel H. Greene and Donald E. Knuth, Mathematics for the Analysis of Algorithms, 3rd ed., Birkhäuser, 1990, pp. 95-98.

Crossrefs

Programs

  • Mathematica
    jaggedQ[n_] := jaggedQ[n] = (f = FactorInteger[n][[All, 1]]; s = Sqrt[n]; Count[f, p_ /; p > s] > 0); a[n_] := ( For[ cnt = 0; j = 2, j <= n, j++, If[jaggedQ[j], cnt++]]; cnt); Table[a[n], {n, 1, 100}]
  • Python
    from math import isqrt
    from sympy import primepi
    def A242493(n): return sum(primepi(n//i)-primepi(i) for i in range(1,isqrt(n)+1)) # Chai Wah Wu, Sep 01 2024

Formula

From Ridouane Oudra, Nov 07 2019: (Start)
a(n) = Sum_{i=1..floor(sqrt(n))} (pi(floor(n/i)) - pi(i)).
a(n) = Sum_{p<=sqrt(n)} (p-1) + Sum_{sqrt(n)
a(n) = n - A064775(n). (End)
a(n) ~ log(2)*n - A153810 * n/log(n) - A242610 * n/log(n)^2 + O(n/log(n)^3) (Greene and Knuth, 1990). - Amiram Eldar, Apr 15 2021
Showing 1-6 of 6 results.