A033677 Smallest divisor of n >= sqrt(n).
1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 4, 13, 7, 5, 4, 17, 6, 19, 5, 7, 11, 23, 6, 5, 13, 9, 7, 29, 6, 31, 8, 11, 17, 7, 6, 37, 19, 13, 8, 41, 7, 43, 11, 9, 23, 47, 8, 7, 10, 17, 13, 53, 9, 11, 8, 19, 29, 59, 10, 61, 31, 9, 8, 13, 11, 67, 17, 23, 10, 71, 9, 73, 37, 15, 19, 11, 13, 79, 10
Offset: 1
Examples
From _Gus Wiseman_, Feb 19 2021: (Start) The divisors of 36 are {1,2,3,4,6,9,12,18,36}. Of these {1,2,3,4,6} are inferior and {6,9,12,18,36} are superior, so a(36) = 6. The divisors of 40 are {1,2,4,5,8,10,20,40}. Of these {1,2,4,5} are inferior and {8,10,20,40} are superior, so a(40) = 8. (End)
References
- G. Tenenbaum, pp. 268ff of R. L. Graham et al., eds., Mathematics of Paul Erdős I.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
The lower central divisor is A033676.
The strictly superior case is A140271.
Leftmost column of A161908 (superior divisors).
Rightmost column of A207375 (central divisors).
A038548 counts superior (or inferior) divisors.
A056924 counts strictly superior (or strictly inferior) divisors.
A070038 adds up superior divisors.
A341676 selects the unique superior prime divisor.
Programs
-
Haskell
a033677 n = head $ dropWhile ((< n) . (^ 2)) [d | d <- [1..n], mod n d == 0] -- Reinhard Zumkeller, Oct 20 2011
-
Maple
A033677 := proc(n) n/A033676(n) ; end proc:
-
Mathematica
Table[Select[Divisors[n], # >= Sqrt[n] &, 1] // First, {n, 80}] (* Jean-François Alcover, Apr 01 2011 *)
-
PARI
A033677(n) = {local(d); d=divisors(n); d[length(d)\2+1]} \\ Michael B. Porter, Feb 26 2010
-
Python
from sympy import divisors def A033677(n): d = divisors(n) return d[len(d)//2] # Chai Wah Wu, Apr 05 2021
Formula
a(n) = n/A033676(n).
a(n) = A162348(2n). - Daniel Forgues, Sep 29 2014
Comments