A248835 a(n) = n + A033677(n), where A033677(n) is the smallest divisor of n >= sqrt(n).
2, 4, 6, 6, 10, 9, 14, 12, 12, 15, 22, 16, 26, 21, 20, 20, 34, 24, 38, 25, 28, 33, 46, 30, 30, 39, 36, 35, 58, 36, 62, 40, 44, 51, 42, 42, 74, 57, 52, 48, 82, 49, 86, 55, 54, 69, 94, 56, 56, 60, 68, 65, 106, 63, 66, 64, 76, 87, 118, 70, 122, 93
Offset: 1
Keywords
Examples
When n = 40, the smallest divisor of 40 that is greater than or equal to sqrt(40) is 8 so a(40)=48.
Links
- Wikipedia, Oppermann's conjecture
Programs
-
Mathematica
a248835[n_Integer] := n + Min[Select[Divisors[n], # >= Sqrt[n] &]]; a248835 /@ Range[120] (* Michael De Vlieger, Nov 10 2014 *)
-
PARI
a(n)=fordiv(n,d,if(d^2>=n,return(n+d))) \\ Charles R Greathouse IV, Oct 21 2014
-
Sage
[n+min([x for x in divisors(n) if x>=sqrt(n)]) for n in [1..100]] # Tom Edgar, Oct 15 2014
Comments