cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064054 Tenth column of trinomial coefficients.

Original entry on oeis.org

5, 50, 266, 1016, 3139, 8350, 19855, 43252, 87802, 168168, 306735, 536640, 905658, 1481108, 2355962, 3656360, 5550755, 8260934, 12075184, 17363896, 24597925, 34370050, 47419905, 64662780, 87222720, 116470380, 154066125, 202008896, 262691396, 338962184
Offset: 0

Views

Author

Wolfdieter Lang, Aug 29 2001

Keywords

Crossrefs

A005716 (ninth column), A111808.

Programs

  • Maple
    A064054 := n -> GegenbauerC(`if`(9A064054(n)), n=5..20); # Peter Luschny, May 10 2016
  • Mathematica
    Table[GegenbauerC[9, -n, -1/2], {n,5,50}] (* G. C. Greubel, Feb 28 2017 *)
  • PARI
    for(n=0,25, print1(binomial(n+5,5)*(n^4 + 66*n^3 + 1307*n^2 + 8706*n + 15120) /(9!/5!), ", ")) \\ G. C. Greubel, Feb 28 2017

Formula

a(n) = A027907(n+5, 9).
a(n) = binomial(n+5, 5)*(n^4+66*n^3+1307*n^2+8706*n+15120) /(9!/5!).
G.f.: (1+x-x^2)*(5-5*x+x^2)/(1-x)^10, numerator polynomial is N3(9, x)= 5+0*x-9*x^2+6*x^3-x^4 from array A063420.
a(n) = A111808(n+5,9) for n>3. - Reinhard Zumkeller, Aug 17 2005
a(n) = 5*binomial(n+5,5) + 20*binomial(n+5,6) + 21*binomial(n+5,7) + 8*binomial(n+5,8) + binomial(n+5,9) (see our comment in A026729). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
a(n) = GegenbauerC(N, -n, -1/2) where N = 9 if 9Peter Luschny, May 10 2016