A213887 Triangle of coefficients of representations of columns of A213743 in binomial basis.
1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 3, 10, 10, 5, 1, 0, 0, 2, 12, 20, 15, 6, 1, 0, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0
Offset: 0
Examples
As a triangle, this begins n/k.|..0....1....2....3....4....5....6....7....8....9 ===================================================== .0..|..1 .1..|..0....1 .2..|..0....1....1 .3..|..0....1....2....1 .4..|..0....1....3....3....1 .5..|..0....0....4....6....4....1 .6..|..0....0....3...10...10....5....1 .7..|..0....0....2...12...20...15....6....1 .8..|..0....0....1...12...31...35...21....7....1 .9..|..0....0....0...10...40...65...56...28....8....1
Crossrefs
Programs
-
Maple
pts := 4; # A213887 g := 1/(1-t*z*add(z^i,i=0..pts-1)) ; for n from 0 to 13 do for k from 0 to n do coeftayl(g,z=0,n) ; coeftayl(%,t=0,k) ; printf("%d ",%) ; end do: printf("\n") ; end do: # R. J. Mathar, May 28 2025
Comments