cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A213887 Triangle of coefficients of representations of columns of A213743 in binomial basis.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 0, 4, 6, 4, 1, 0, 0, 3, 10, 10, 5, 1, 0, 0, 2, 12, 20, 15, 6, 1, 0, 0, 1, 12, 31, 35, 21, 7, 1, 0, 0, 0, 10, 40, 65, 56, 28, 8, 1, 0, 0, 0, 6, 44, 101, 120, 84, 36, 9, 1, 0
Offset: 0

Views

Author

Keywords

Comments

This triangle is the third array in the sequence of arrays A026729, A071675 considered as triangles.
Let {a_(k,i)}, k>=1, i=0,...,k, be the k-th row of the triangle. Then s_k(n)=sum{i=0,...,k}a_(k,i)* binomial(n,k) is the n-th element of the k-th column of A213743. For example, s_1(n)=binomial(n,1)=n is the first column of A213743 for n>1, s_2(n)=binomial(n,1)+binomial(n,2)is the second column of A213743 for n>1, etc. In particular (see comment in A213743), in cases k=6,7,8,9 s_k(n) is A064056(n+2), A064057(n+2), A064058(n+2), A000575(n+3) respectively.
Riordan array (1,x+x^2+x^3+x^4). A186332 with additional 0 column. - Ralf Stephan, Dec 31 2013

Examples

			As a triangle, this begins
n/k.|..0....1....2....3....4....5....6....7....8....9
=====================================================
.0..|..1
.1..|..0....1
.2..|..0....1....1
.3..|..0....1....2....1
.4..|..0....1....3....3....1
.5..|..0....0....4....6....4....1
.6..|..0....0....3...10...10....5....1
.7..|..0....0....2...12...20...15....6....1
.8..|..0....0....1...12...31...35...21....7....1
.9..|..0....0....0...10...40...65...56...28....8....1
		

Crossrefs

Cf. A026729, A071675, A030528 (parts <=2), A078803 (parts <=3), A213888 (parts <=5), A061676 and A213889 (parts <=6).

Programs

  • Maple
    pts := 4; # A213887
    g := 1/(1-t*z*add(z^i,i=0..pts-1)) ;
    for n from 0 to 13 do
        for k from 0 to n do
            coeftayl(g,z=0,n) ;
            coeftayl(%,t=0,k) ;
            printf("%d ",%) ;
        end do:
        printf("\n") ;
    end do: # R. J. Mathar, May 28 2025

A213743 Triangle T(n,k), read by rows, of numbers T(n,k)=C^(4)(n,k) of combinations with repetitions from n different elements over k for each of them not more than four appearances allowed.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 6, 10, 1, 4, 10, 20, 35, 1, 5, 15, 35, 70, 121, 1, 6, 21, 56, 126, 246, 426, 1, 7, 28, 84, 210, 455, 875, 1520, 1, 8, 36, 120, 330, 784, 1652, 3144, 5475, 1, 9, 45, 165, 495, 1278, 2922, 6030, 11385, 19855, 1, 10, 55, 220, 715, 1992, 4905, 10890, 22110, 41470, 72403
Offset: 0

Views

Author

Keywords

Comments

The left side of triangle consists of 1's, while the right side is formed by A187925. Further, T(n,0)=1, T(n,1)=n, T(n,2)=A000217(n) for n>1, T(n,3)=A000292(n) for n>=3, T(n,4)=A000332(n) for n>=7, T(n,5)=A027659(n) for n>=3, T(n,6)=A064056(n) for n>=4, T(n,7)=A064057(n) for n>=5, T(n,8)=A064058(n) for n>=6, T(n,9)=A000575(n) for n>=6.

Examples

			Triangle begins
  n/k.|..0.....1.....2.....3.....4.....5.....6.....7
  ==================================================
  .0..|..1
  .1..|..1.....1
  .2..|..1.....2.....3
  .3..|..1.....3.....6....10
  .4..|..1.....4....10....20....35
  .5..|..1.....5....15....35....70....121
  .6..|..1.....6....21....56...126....246...426
  .7..|..1.....7....28....84...210....455...875....1520
T(4,2)=C^(4)(4,2): From 4 elements {1,2,3,4}, we have the following 10 allowed combinations of 2 elements: {1,1}, {1,2}, {1,3}, {1,4}, {2,2}, {2,3}, {2,4}, {3,3}, {3,4}, {4,4}.
		

Crossrefs

Programs

  • Mathematica
    Flatten[Table[Sum[(-1)^r Binomial[n,r] Binomial[n-# r+k-1,n-1],{r,0,Floor[k/#]}],{n,0,15},{k,0,n}]/.{0}->{1}]&[5] (* Peter J. C. Moses, Apr 16 2013 *)

Formula

C^(4)(n,k) = Sum_{r=0...floor(k/5)} (-1)^r*C(n,r)*C(n-5*r+k-1, n-1).

A064058 Ninth column of quintinomial coefficients.

Original entry on oeis.org

1, 15, 85, 320, 951, 2415, 5475, 11385, 22110, 40612, 71214, 120055, 195650, 309570, 477258, 718998, 1061055, 1537005, 2189275, 3070914, 4247617, 5800025, 7826325, 10445175, 13798980, 18057546, 23422140
Offset: 0

Views

Author

Wolfdieter Lang, Aug 29 2001

Keywords

Crossrefs

Cf. A064057 (eighth column), A000575 (tenth column).

Programs

  • Mathematica
    With[{c=8!/4!},Table[(Binomial[n+4,4](n^4+34n^3+451n^2+2874n+1680))/c, {n,0,30}]] (* or *) LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,15,85,320,951,2415,5475,11385,22110},30] (* Harvey P. Dale, Oct 30 2011 *)

Formula

a(n) = A035343(n+2, 8) = binomial(n+4, 4)*(n^4+34*n^3+451*n^2+2874*n+1680)/(8!/4!).
G.f.: (1+6*x-14*x^2+11*x^3-3*x^4)/(1-x)^9; numerator polynomial is N5(8, x) from the array A063422.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) with a(0)=1, a(1)=15, a(2)=85, a(3)=320, a(4)=951, a(5)=2415, a(6)=5475, a(7)=11385, a(8)=22110. - Harvey P. Dale, Oct 30 2011
a(n) = C(n+2,2) + 12*C(n+2,3) + 31*C(n+2,4) + 35*C(n+2,5) + 21*C(n+2,6) + 7*C(n+2,7) + C(n+2,8) (see comment in A213887). - Vladimir Shevelev and Peter J. C. Moses, Jun 22 2012
Showing 1-3 of 3 results.