cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A336967 Prime starting a sequence of 24 consecutive primes with symmetrical gaps about the center.

Original entry on oeis.org

22930603692243271, 34984922852185283, 60960572612579749, 226721453950385059, 301850075265898823, 310402815525745511, 341206644560627711, 357582484287837103, 481408770994035947, 492720459594614777, 528050771271601307, 587950582712698157, 675424273001524577
Offset: 1

Views

Author

Tomáš Brada, Aug 09 2020

Keywords

Crossrefs

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+11) >= 11. - Peter Munn, Jan 09 2023

A336968 Prime starting a sequence of 22 consecutive primes with symmetrical gaps about the center.

Original entry on oeis.org

633925574060671, 2235053194261739, 3693434256575461, 6244996197964523, 7312449941282693, 11768508587048027, 12241378636561883, 12696156429346387, 13388148635660387, 14052415423668901, 18620445306703861, 19802687937976219, 22930603692243341, 23122811970297833
Offset: 1

Views

Author

Tomáš Brada, Aug 09 2020

Keywords

Crossrefs

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+10) >= 10. - Peter Munn, Jan 09 2023

A064102 Primes p = prime(k) such that prime(k) + prime(k+7) = prime(k+1) + prime(k+6) = prime(k+2) + prime(k+5) = prime(k+3) + prime(k+4).

Original entry on oeis.org

17, 149, 677, 853, 1277, 5437, 6101, 13499, 13921, 19853, 22073, 41863, 49667, 51307, 51797, 55799, 61637, 66337, 83227, 91121, 100957, 103963, 109111, 113147, 128747, 136309, 137933, 148157, 158849, 163117, 167249, 179033, 205171, 208927
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2001

Keywords

Examples

			17 + 43 = 19 + 41 = 23 + 37 = 29 + 31.
		

Crossrefs

Programs

  • Mathematica
    a = {0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 8 ] ] == a[ [ 2 ] ] + a[ [ 7 ] ] == a[ [ 3 ] ] + a[ [ 6 ] ] == a[ [ 4 ] ] + a[ [ 5 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 10^4} ]
    Select[Partition[Prime[Range[20000]],8,1],#[[1]]+#[[8]]==#[[2]]+#[[7]]==#[[3]]+#[[6]]==#[[4]]+#[[5]]&][[;;,1]] (* Harvey P. Dale, Jul 03 2025 *)
  • PARI
    { n=0; default(primelimit, 8300000); for (k=1, 10^9, p1=prime(k) + prime(k + 7); p2=prime(k + 1) + prime(k + 6); p3=prime(k + 2) + prime(k + 5); p4=prime(k + 3) + prime(k + 4); if (p1==p2 && p2==p3 && p3==p4, write("b064102.txt", n++, " ", prime(k)); if (n==400, break)) ) } \\ Harry J. Smith, Sep 07 2009

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+3) >= 3. - Peter Munn, Jan 09 2023

A333977 Prime starting a sequence of 20 consecutive primes with symmetrical gaps about the center.

Original entry on oeis.org

1797595814863, 2375065608481, 4465545586753, 21818228348093, 67696772430071, 82116093014611, 155947272322087, 161980267642951, 169560139541641, 202619277419161, 285719200081877, 299828814652799, 314942862282899, 365706921997577
Offset: 1

Views

Author

Tomáš Brada, Sep 20 2020

Keywords

Crossrefs

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+9) >= 9. - Peter Munn, Jan 09 2023

A064103 Primes p = p(k) such that p(k) + p(k+9) = p(k+1) + p(k+8) = p(k+2) + p(k+7) = p(k+3) + p(k+6) = p(k+4) + p(k+5).

Original entry on oeis.org

13, 139, 6091, 19843, 51787, 55793, 113143, 179029, 205157, 302551, 346361, 460949, 895799, 970447, 1150651, 1180847, 1697257, 1929553, 2334781, 2580631, 2797447, 3056561, 3086009, 3416717, 3598943, 4024667, 4026107, 4067123, 4077583, 4389503, 4541083, 4790503
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2001

Keywords

Examples

			13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 29 + 31.
		

Crossrefs

Programs

  • Mathematica
    a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 10 ] ] == a[ [ 2 ] ] + a[ [ 9 ] ] == a[ [ 3 ] ] + a[ [ 8 ] ] == a[ [ 4 ] ] + a[ [ 7 ] ] == a[ [ 5 ] ] + a[ [ 6 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 3 10^5} ]

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+4) >= 4. - Peter Munn, Jan 13 2023

Extensions

More terms from Sean A. Irvine, Jun 11 2023

A064104 Primes p = p(k) such that p(k) + p(k+11) = p(k+1) + p(k+10) = p(k+2) + p(k+9) = p(k+3) + p(k+8) = p(k+4) + p(k+7) = p(k+5) + p(k+6).

Original entry on oeis.org

137, 55787, 113131, 179021, 895789, 1150649, 3086003, 4026103, 4077559, 8021753, 8750857, 12577063, 14355559, 19136527, 19412863, 20065961, 21865339, 22633141, 25880177, 30404971, 33926159, 38202173, 41905891, 42925699
Offset: 1

Views

Author

Robert G. Wilson v, Sep 17 2001

Keywords

Examples

			137 + 193 = 139 + 191 = 149 + 181 = 151 + 179 = 157 + 173 = 163 + 167.
		

Crossrefs

Programs

  • Mathematica
    a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 12 ] ] == a[ [ 2 ] ] + a[ [ 11 ] ] == a[ [ 3 ] ] + a[ [ 10 ] ] == a[ [ 4 ] ] + a[ [ 9 ] ] == a[ [ 5 ] ] + a[ [ 8 ] ] == a[ [ 6 ] ] + a[ [ 7 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 10^6} ]
    okQ[n_]:=Length[Union[Take[n,6]+Reverse[Take[n,-6]]]]==1; Transpose[ Select[Partition[Prime[Range[2700000]],12,1],okQ]][[1]] (* Harvey P. Dale, Apr 25 2011 *)

Formula

Primes p = prime(k) = A000040(k) such that A359440(k+5) >= 5. - Peter Munn, Jan 13 2023
Showing 1-6 of 6 results.