A336967
Prime starting a sequence of 24 consecutive primes with symmetrical gaps about the center.
Original entry on oeis.org
22930603692243271, 34984922852185283, 60960572612579749, 226721453950385059, 301850075265898823, 310402815525745511, 341206644560627711, 357582484287837103, 481408770994035947, 492720459594614777, 528050771271601307, 587950582712698157, 675424273001524577
Offset: 1
Cf.
A000040,
A055381,
A055382,
A064101,
A081235,
A175309,
A335044,
A335394,
A336966,
A336968,
A359440.
A336968
Prime starting a sequence of 22 consecutive primes with symmetrical gaps about the center.
Original entry on oeis.org
633925574060671, 2235053194261739, 3693434256575461, 6244996197964523, 7312449941282693, 11768508587048027, 12241378636561883, 12696156429346387, 13388148635660387, 14052415423668901, 18620445306703861, 19802687937976219, 22930603692243341, 23122811970297833
Offset: 1
Cf.
A000040,
A055381,
A055382,
A064101,
A081235,
A175309,
A333977,
A335044,
A335394,
A336967,
A359440.
A064102
Primes p = prime(k) such that prime(k) + prime(k+7) = prime(k+1) + prime(k+6) = prime(k+2) + prime(k+5) = prime(k+3) + prime(k+4).
Original entry on oeis.org
17, 149, 677, 853, 1277, 5437, 6101, 13499, 13921, 19853, 22073, 41863, 49667, 51307, 51797, 55799, 61637, 66337, 83227, 91121, 100957, 103963, 109111, 113147, 128747, 136309, 137933, 148157, 158849, 163117, 167249, 179033, 205171, 208927
Offset: 1
17 + 43 = 19 + 41 = 23 + 37 = 29 + 31.
-
a = {0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 8 ] ] == a[ [ 2 ] ] + a[ [ 7 ] ] == a[ [ 3 ] ] + a[ [ 6 ] ] == a[ [ 4 ] ] + a[ [ 5 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 10^4} ]
Select[Partition[Prime[Range[20000]],8,1],#[[1]]+#[[8]]==#[[2]]+#[[7]]==#[[3]]+#[[6]]==#[[4]]+#[[5]]&][[;;,1]] (* Harvey P. Dale, Jul 03 2025 *)
-
{ n=0; default(primelimit, 8300000); for (k=1, 10^9, p1=prime(k) + prime(k + 7); p2=prime(k + 1) + prime(k + 6); p3=prime(k + 2) + prime(k + 5); p4=prime(k + 3) + prime(k + 4); if (p1==p2 && p2==p3 && p3==p4, write("b064102.txt", n++, " ", prime(k)); if (n==400, break)) ) } \\ Harry J. Smith, Sep 07 2009
A333977
Prime starting a sequence of 20 consecutive primes with symmetrical gaps about the center.
Original entry on oeis.org
1797595814863, 2375065608481, 4465545586753, 21818228348093, 67696772430071, 82116093014611, 155947272322087, 161980267642951, 169560139541641, 202619277419161, 285719200081877, 299828814652799, 314942862282899, 365706921997577
Offset: 1
Cf.
A000040,
A055381,
A055382,
A064101,
A081235,
A175309,
A335044,
A335394,
A336967,
A336968,
A359440.
A064103
Primes p = p(k) such that p(k) + p(k+9) = p(k+1) + p(k+8) = p(k+2) + p(k+7) = p(k+3) + p(k+6) = p(k+4) + p(k+5).
Original entry on oeis.org
13, 139, 6091, 19843, 51787, 55793, 113143, 179029, 205157, 302551, 346361, 460949, 895799, 970447, 1150651, 1180847, 1697257, 1929553, 2334781, 2580631, 2797447, 3056561, 3086009, 3416717, 3598943, 4024667, 4026107, 4067123, 4077583, 4389503, 4541083, 4790503
Offset: 1
13 + 47 = 17 + 43 = 19 + 41 = 23 + 37 = 29 + 31.
-
a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 10 ] ] == a[ [ 2 ] ] + a[ [ 9 ] ] == a[ [ 3 ] ] + a[ [ 8 ] ] == a[ [ 4 ] ] + a[ [ 7 ] ] == a[ [ 5 ] ] + a[ [ 6 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 3 10^5} ]
A064104
Primes p = p(k) such that p(k) + p(k+11) = p(k+1) + p(k+10) = p(k+2) + p(k+9) = p(k+3) + p(k+8) = p(k+4) + p(k+7) = p(k+5) + p(k+6).
Original entry on oeis.org
137, 55787, 113131, 179021, 895789, 1150649, 3086003, 4026103, 4077559, 8021753, 8750857, 12577063, 14355559, 19136527, 19412863, 20065961, 21865339, 22633141, 25880177, 30404971, 33926159, 38202173, 41905891, 42925699
Offset: 1
137 + 193 = 139 + 191 = 149 + 181 = 151 + 179 = 157 + 173 = 163 + 167.
-
a = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 12 ] ] == a[ [ 2 ] ] + a[ [ 11 ] ] == a[ [ 3 ] ] + a[ [ 10 ] ] == a[ [ 4 ] ] + a[ [ 9 ] ] == a[ [ 5 ] ] + a[ [ 8 ] ] == a[ [ 6 ] ] + a[ [ 7 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 10^6} ]
okQ[n_]:=Length[Union[Take[n,6]+Reverse[Take[n,-6]]]]==1; Transpose[ Select[Partition[Prime[Range[2700000]],12,1],okQ]][[1]] (* Harvey P. Dale, Apr 25 2011 *)
Showing 1-6 of 6 results.