cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064146 Sum of non-unitary prime divisors of binomial(n,floor(n/2)).

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 0, 0, 3, 5, 0, 2, 2, 2, 3, 3, 0, 2, 0, 2, 2, 2, 0, 2, 7, 7, 10, 10, 5, 5, 3, 3, 3, 5, 5, 7, 7, 7, 3, 5, 2, 2, 2, 2, 10, 10, 8, 10, 12, 12, 12, 12, 9, 9, 2, 2, 2, 2, 2, 2, 2, 2, 10, 10, 7, 9, 7, 9, 5, 5, 0, 2, 2, 2, 7, 7, 14, 14, 7, 9, 12, 12, 5, 5, 10, 10, 10, 10, 5, 5, 12, 12, 12
Offset: 1

Views

Author

Labos Elemer, Sep 11 2001

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> add(`if`(i[2]>1, i[1], 0), i=ifactors(binomial(n, iquo(n,2)))[2]):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 24 2018
  • Mathematica
    a[n_] := Sum[If[i[[2]] > 1, i[[1]], 0], {i, FactorInteger[ Binomial[n, Quotient[n, 2]]]}];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 02 2022, after Alois P. Heinz *)
  • PARI
    a(n) = { my(f=factor(binomial(n, n\2))); sum(i=1, #f~, if (f[i, 2]>1, f[i,1])) } \\ Harry J. Smith, Sep 09 2009

Formula

a(n) = A063958(A001405(n)).