A064168 Sum of numerator and denominator in n-th harmonic number, 1 + 1/2 + 1/3 +...+ 1/n.
2, 5, 17, 37, 197, 69, 503, 1041, 9649, 9901, 111431, 113741, 1506353, 1532093, 1556117, 3157279, 54394463, 18358381, 352893319, 71354639, 24031221, 24266365, 563299563, 1704771547, 42976237267, 43319457067, 392849685203, 395718022103, 11556136074187
Offset: 1
Examples
The 3rd harmonic number is 11/6. So a(3) = 11 + 6 = 17.
Links
- Brian Hayes, A Tantonalizing Problem
Programs
-
Maple
h:= n-> numer(sum(1/k,k=1..n))+denom(sum(1/k,k=1..n)): seq(h(n),n=1..30); # Emeric Deutsch, Nov 18 2004
-
Mathematica
Numerator[#]+Denominator[#]&/@HarmonicNumber[Range[30]] (* Harvey P. Dale, Jul 04 2017 *)
-
PARI
a(n) = my(h=sum(k=1, n, 1/k)); numerator(h) + denominator(h); \\ Michel Marcus, Sep 07 2019
Extensions
More terms from Emeric Deutsch, Nov 18 2004
Comments