A064174 Number of partitions of n with nonnegative rank.
1, 1, 2, 3, 4, 6, 9, 12, 17, 23, 31, 42, 56, 73, 96, 125, 161, 207, 265, 336, 426, 536, 672, 840, 1046, 1296, 1603, 1975, 2425, 2970, 3628, 4417, 5367, 6503, 7861, 9482, 11412, 13702, 16423, 19642, 23447, 27938, 33231, 39453, 46767, 55342, 65386, 77135
Offset: 1
Keywords
Examples
a(20) = p(19) - p(15) + p(8) = 490 - 176 + 22 = 336.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz)
- Cristina Ballantine and Mircea Merca, Bisected theta series, least r-gaps in partitions, and polygonal numbers, arXiv:1710.05960 [math.CO], 2017.
- Rekha Biswal, bijection between number of partitions of 2n satisfying certain conditions with number of partitions of n, Mathoverflow.
- Mircea Merca, Rank partition functions and truncated theta identities, arXiv:2006.07705 [math.CO], 2020.
Crossrefs
Programs
-
Maple
f:= n -> add((-1)^(k+1)*combinat:-numbpart(n-(3*k^2-k)/2),k=1..floor((1+sqrt(24*n+1))/6)): map(f, [$1..100]); # Robert Israel, Aug 03 2015
-
Mathematica
Table[Count[IntegerPartitions[n], q_ /; First[q] >= Length[q]], {n, 16}] (* also *) Table[Count[IntegerPartitions[2n],q_/;Last[q]===1 && Max[q-PadRight[Rest[q],Length[q]]]<=1 && Count[First/@Partition[q,2],?OddQ]==Count[Last/@Partition[q,2],?OddQ]],{n,16}] (* also *) Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[Max[p], Length[p]]]], {n, 50}] (* Clark Kimberling, Feb 28 2014 *)
-
PARI
{a(n) = my(A=1); A = sum(m=0,n,x^m*prod(k=1,m,(1-x^(m+k-1))/(1-x^k +x*O(x^n)))); polcoeff(A,n)} for(n=1,60,print1(a(n),", ")) \\ Paul D. Hanna, Aug 03 2015
-
PARI
my(N=50, x='x+O('x^N)); Vec(1/prod(k=1, N, 1-x^k)*sum(k=1, N, (-1)^(k-1)*x^(k*(3*k-1)/2))) \\ Seiichi Manyama, May 21 2023
Formula
a(n) = p(n-1) - p(n-5) + p(n-12) - ... -(-1)^k*p(n-(3*k^2-k)/2) + ..., where p() is A000041(). - Vladeta Jovovic, Aug 04 2004
G.f.: Sum_{n>=1} x^n * Product_{k=1..n} (1 - x^(n+k-1))/(1 - x^k). - Paul D. Hanna, Aug 03 2015
G.f.: (1/Product_{k>=1} (1-x^k)) * Sum_{k>=1} (-1)^(k-1) * x^(k*(3*k-1)/2). - Seiichi Manyama, May 21 2023
Extensions
Mathematica programs modified by Clark Kimberling, Feb 12 2014
Comments