cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064200 a(n) = 12*n*(n-1).

Original entry on oeis.org

0, 0, 24, 72, 144, 240, 360, 504, 672, 864, 1080, 1320, 1584, 1872, 2184, 2520, 2880, 3264, 3672, 4104, 4560, 5040, 5544, 6072, 6624, 7200, 7800, 8424, 9072, 9744, 10440, 11160, 11904, 12672, 13464, 14280, 15120, 15984, 16872, 17784, 18720, 19680, 20664, 21672
Offset: 0

Views

Author

Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr), Sep 22 2001

Keywords

References

  • Luigi Berzolari, Allgemeine Theorie der Höheren Ebenen Algebraischen Kurven, Encyclopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band III_2, Heft 3, Leipzig: B. G. Teubner, 1906, p. 341.

Crossrefs

Programs

Formula

a(n) = 24*(n-1) + a(n-1) for n>0, with a(0)=0. - Vincenzo Librandi, Aug 07 2010
a(0)=0, a(1)=0, a(2)=24, a(n)=3*a(n-1)-3*a(n-2)+a(n-3). - Harvey P. Dale, Jul 22 2015
G.f.: -(24*x^2)/(x-1)^3. - Harvey P. Dale, Jul 22 2015
a(n) = 2*A003154(n) - 2. See Twin Stars illustration. - Leo Tavares, Aug 23 2021
From Amiram Eldar, Feb 22 2023: (Start)
Sum_{n>=2} 1/a(n) = 1/12.
Sum_{n>=2} (-1)^n/a(n) = (2*log(2) - 1)/12.
Product_{n>=2} (1 - 1/a(n)) = -(12/Pi)*cos(Pi/sqrt(3)).
Product_{n>=2} (1 + 1/a(n)) = (12/Pi)*cos(Pi/sqrt(6)). (End)