cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A204324 Numbers k such that A007953(k) >= A007953(k^3), where A007953 = digital sum in base 10.

Original entry on oeis.org

0, 1, 8, 10, 80, 100, 171, 378, 468, 487, 577, 585, 586, 587, 684, 800, 1000, 1710, 3780, 4680, 4870, 4877, 5770, 5850, 5851, 5860, 5868, 5870, 6840, 8000, 10000, 15877, 17100, 28845, 28847, 28885, 28887, 37800, 46800, 46877, 48700, 48770, 48784, 49468
Offset: 1

Views

Author

M. F. Hasler, Jan 14 2012

Keywords

Comments

When k is in the sequence, then 10*k is in the sequence, too.

Crossrefs

Programs

  • Mathematica
    Select[Range[0,51000],Total[IntegerDigits[#]]>=Total[IntegerDigits[#^3]]&] (* Harvey P. Dale, Jul 05 2025 *)
  • PARI
    for(n=0,1e6, A007953(n)>=A007953(n^3)&print1(n","))

Formula

A258320 Sum of the digits of n exceeds the sum of the digits of n^2 and the sum of digits of n^3.

Original entry on oeis.org

49639, 496390, 736968, 4963900, 7369680, 7989889, 8962888, 49639000, 73696800, 79898890, 89628880, 284799946, 467995756, 468754968, 479593884, 479698887, 493968877, 496390000, 736968000, 789499856, 795875871, 796999858, 798968787, 798988900, 896288800
Offset: 1

Views

Author

Giovanni Resta, May 26 2015

Keywords

Comments

Intersection of A064399 and A064209.

Examples

			n = 49639 is in the sequence because sod(n) = 31, sod(n^2) = 25 and  sod(n^3) = 28. Here n^2 = 2464030321 and n^3 = 122312001104119.
		

Crossrefs

Programs

  • Mathematica
    sod[n_]:=Plus@@ IntegerDigits@ n; Select[Range[10^6], sod[#^3] < sod@# && sod[#^2] < sod@# &]

A261439 Sum of the digits of n exceeds the sum of the digits of n^4.

Original entry on oeis.org

124499, 1244990, 12449900, 124499000, 594959999, 1244990000, 1349969999, 5949599990, 12449900000, 13499699990, 59495999900
Offset: 1

Views

Author

Jeppe Stig Nielsen, Aug 18 2015

Keywords

Comments

A comment by M. F. Hasler in A122484 shows that there are infinitely many terms not divisible by 10.

Crossrefs

A122484 is the main sequence.

Programs

  • PARI
    is(n)=sumdigits(n)>sumdigits(n^4) \\ Charles R Greathouse IV, Aug 18 2015
    
  • Python
    from itertools import count, islice
    def A261439_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n: sum(int(d) for d in str(n)) > sum(int(d) for d in str(n**4)), count(max(startvalue,1)))
    A261439_list = list(islice(A261439_gen(),3)) # Chai Wah Wu, Oct 20 2023

A363836 a(n) = smallest number m such that digitsum(m^n) < digitsum(m), or -1 if no such m exists.

Original entry on oeis.org

39, 587, 124499
Offset: 2

Views

Author

Max Alekseyev, Oct 19 2023

Keywords

Comments

a(n) > 0 when n is even (see MSE link).
a(5) > 10^12 or a(5) = -1. - Max Alekseyev, Jan 26 2024

Examples

			a(2) = A064399(1).
a(3) = A064209(1).
a(4) = A261439(1).
		

Crossrefs

Showing 1-4 of 4 results.