A064237 Numbers k such that k! + 1 is divisible by a square.
4, 5, 7, 12, 23
Offset: 1
Examples
4 is in the sequence because 4! + 1 = 5^2. 5 is in the sequence because 5! + 1 = 11^2. 6 is not in the sequence because 6! + 1 = 721 7 is in the sequence because 7! + 1 = 71^2. 12 is in the sequence because 12! + 1 = 13^2 * 2834329. 23 is a term because 23!+1 = 47^2*79*148139754736864591. From _Thomas Richard_, Aug 31 2021: (Start) 229 and 562 are terms because 229!+1 = 613^2 * 38669 * 1685231 * 3011917759 * (417-digit composite) 562!+1 = 563^2 * 64467346976659839517037 * 112870688711507255213769871 * 63753966393108716329397432599379239 * (1214-digit prime). (End)
Links
- Hisanori Mishima, Factorizations of m!+1
Programs
-
Maple
remove(t -> numtheory:-issqrfree(t!+1), [$1..50]); # Robert Israel, Jul 04 2016
-
Mathematica
Flatten[Position[MoebiusMu[Range[30]!+1], 0]]; (* T. D. Noe, Mar 01 2006, Nov 21 2008 *)
-
PARI
lista(nn) = for(n=1, nn, if(!issquarefree(n!+1), print1(n, ", "))); \\ Altug Alkan, Mar 08 2016
Extensions
Example corrected by T. D. Noe, Nov 26 2008
Comments