cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A128996 Intersection of A061068 and A064270.

Original entry on oeis.org

3, 11, 19, 79, 683, 733, 971, 1433, 1453, 2531, 3181, 3931, 4027, 4111, 4153, 4943, 6397, 6491, 6653, 6673, 6883, 8521, 8641, 8969, 10463, 10477, 10667, 11383, 11411, 11587, 12527, 13229, 15749, 16631, 17971, 21757, 21929, 24767, 27031, 28859
Offset: 1

Views

Author

Zak Seidov, Apr 30 2007

Keywords

Comments

Primes which are equal to (some prime plus its subscript) and also to (some other prime minus its subscript). Primes of the form p(m)+m and p(n)-n, p(k) = k-th prime.

Examples

			3=p(1)+1=2+1 and 3=p(4)-4=7-4 (that is m=1, n=4),
11=p(4)+4=7+4 and 11=p(8)-8=19-8 (m=4, n=8),
19=p(6)+6=13+6 and 19=p(10)-10=29-10 (m=6, n=10),
79=p(18)+18=61+18 and 79=p(28)-28=107-28 (m=18, n=28),
683=p(106)+106=577+106 and 683=p(144)-144=827-144 (m=106, n=144).
		

Crossrefs

Formula

p=p(m)+m=p(n)-n for some m and some n>m.

A234694 a(n) = |{0 < k < n: p = k + prime(n-k) and prime(p) - p + 1 are both prime}|.

Original entry on oeis.org

0, 1, 0, 2, 1, 2, 1, 0, 0, 2, 2, 4, 1, 1, 2, 4, 2, 1, 1, 2, 3, 3, 2, 3, 1, 1, 1, 3, 5, 4, 3, 4, 3, 3, 3, 2, 4, 3, 2, 5, 4, 4, 4, 1, 1, 5, 4, 2, 1, 2, 5, 5, 2, 3, 4, 2, 3, 5, 7, 7, 6, 2, 5, 6, 2, 5, 4, 4, 7, 6, 6, 5, 4, 8, 7, 4, 5, 3, 5, 7, 3, 5, 4, 7, 6, 7, 2
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 29 2013

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 9. Also, for any integer n > 51 there is a positive integer k < n such that p = k + prime(n-k) and prime(p) + p + 1 are both prime.
(ii) If n > 9 (or n > 21), then there is a positive integer k < n such that m - 1 and prime(m) + m (or prime(m) - m, resp.) are both prime, where m = k + prime(n-k).
(iii) If n > 483, then for some 0 < k < n both prime(m) + m and prime(m) - m are prime, where m = k + prime(n-k).
(iv) If n > 3, then there is a positive integer k < n such that prime(k + prime(n-k)) + 2 is prime.
Clearly, part (i) of the conjecture implies that there are infinitely many primes p with prime(p) - p + 1 (or prime(p) + p + 1) also prime.
See A234695 for primes p with prime(p) - p + 1 also prime.

Examples

			a(5) = 1 since 2 + prime(3) = 7 and prime(7) - 6 = 11 are both prime.
a(25) = 1 since 20 + prime(5) = 31 and prime(31) - 30 = 97 are both prime.
a(27) = 1 since 18 + prime(9) = 41 and prime(41) - 40 = 139 are both prime.
a(45) = 1 since 6 + prime(39) = 173 and prime(173) - 172 = 859 are both prime.
a(49) = 1 since 26 + prime(23) = 109 and prime(109) - 108 = 491 are both prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_,k_]:=k+Prime[n-k]
    q[n_,k_]:=PrimeQ[f[n,k]]&&PrimeQ[Prime[f[n,k]]-f[n,k]+1]
    a[n_]:=Sum[If[q[n,k],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A064269 Numbers k such that prime(k) - k is prime.

Original entry on oeis.org

3, 4, 6, 8, 10, 14, 16, 18, 28, 30, 42, 44, 50, 54, 66, 68, 76, 84, 90, 94, 110, 144, 148, 154, 168, 174, 178, 192, 196, 214, 220, 242, 264, 266, 268, 278, 280, 282, 294, 304, 308, 336, 346, 348, 354, 358, 360, 370, 376, 380, 382, 384, 390, 400, 402, 408, 414
Offset: 1

Views

Author

Jason Earls, Sep 23 2001

Keywords

Examples

			n=54: prime(54) - 54 = 197, a prime.
		

Crossrefs

Programs

  • Mathematica
    Select[ Range[ 415 ], PrimeQ[ Prime[ # ] - # ] & ]
  • PARI
    j=[]; for(n=1,500, if(isprime(prime(n)-n), j=concat(j,n))); j
    
  • PARI
    { n=0; for (m=1, 10^9, if (isprime(prime(m) - m), write("b064269.txt", n++, " ", m); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 10 2009

A232861 Numbers k with k - 1, k + 1, prime(k) - k, prime(k) + k, k*prime(k) - 1, k*prime(k) + 1 all prime.

Original entry on oeis.org

22110, 23742, 128238, 275592, 346560, 1061910, 1281522, 1339002, 1378188, 1461600, 1850130, 2064150, 2354952, 2478270, 2523708, 2689260, 2694300, 3916638, 4422618, 4933530, 6179082, 6541080, 6641562, 6740478, 6759030, 7315812, 8484798, 8711010, 9133308, 9687720
Offset: 1

Views

Author

Zhi-Wei Sun, Dec 01 2013

Keywords

Comments

Obviously, each term of the sequence is a multiple of 6.
Conjecture: (i) This sequence contains infinitely many terms.
(ii) Let P(x) be a non-constant integer-valued polynomial with positive leading coefficient. Then, there are infinitely many positive integers k with prime(k) - k in the range P(Z) = {P(m): m is an integer}, if and only if the degree of P(x) is at most 3. We may also replace prime(k) - k by prime(k) + k.

Examples

			a(1) = 22110 with the six numbers 22110 - 1 = 22109, 22110 + 1 = 22111, prime(22110) - 22110 = 228841, prime(22110) + 22110 = 273061, 22110*prime(22110) - 1 = 5548526609, 22110*prime(22110) + 1 = 5548526611 all prime.
		

Crossrefs

Programs

  • Mathematica
    n=0
    Do[If[PrimeQ[k-1]&&PrimeQ[k+1]&&PrimeQ[Prime[k]-k]&& PrimeQ[Prime[k]+k]&& PrimeQ[k*Prime[k]-1]&& PrimeQ[k*Prime[k]+1],n=n+1;Print[n," ",k]],{k,1,9700000}]

A172096 Primes having no representation of the form prime(n)-+n.

Original entry on oeis.org

13, 17, 23, 31, 41, 47, 53, 59, 61, 67, 71, 73, 89, 97, 103, 107, 109, 131, 137, 151, 157, 167, 181, 191, 193, 199, 211, 227, 229, 233, 239, 241, 257, 263, 277, 281, 283, 293, 311, 313, 317, 331, 337, 347, 353, 359, 367, 379, 389
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 21 2010

Keywords

Examples

			13 is a term because it's prime and prime(n)+n < 13 for n <= 4 and > 13 for n > 4, and prime(n)-n < 13 for n <= 8 and > 13 for n > 8.
		

Crossrefs

Cf. A064270.

Programs

  • Mathematica
    nn=100; p=Select[Union[Flatten[Table[Prime[n]+{-n,n}, {n,nn}]]], PrimeQ]; Complement[Prime[Range[PrimePi[p[[-1]]]]], p]

Extensions

Corrected by T. D. Noe, Nov 21 2010
Showing 1-5 of 5 results.