cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A007016 Number of permutations of length n with 1 fixed and 1 reflected point.

Original entry on oeis.org

0, 1, 0, 0, 8, 20, 96, 656, 5568, 48912, 494080, 5383552, 65097600, 840566080, 11833898496, 176621049600, 2838024476672, 48060623405312, 868000333234176, 16441638519762944, 329723762151352320, 6907027877807330304
Offset: 0

Views

Author

Keywords

Comments

Number of distinct solutions to the order n checkerboard problem, including symmetrical solutions: place n pieces on an n X n board so there is exactly one piece in each row, column and main diagonal. Compare A064280.
Number of magic permutation matrices of order n. - Chai Wah Wu, Jan 15 2019
Upper bound for the number of diagonal transversals in a Latin square: A287647(n) <= A287648(n) <= a(n). - Eduard I. Vatutin, Jan 02 2020

References

  • Simpson, Todd; Permutations with unique fixed and reflected points. Ars Combin. 39 (1995), 97-108.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    x[n_] := x[n] = Integrate[If[EvenQ[n], (x^2 - 4*x + 2)^(n/2), (x - 1)*(x^2 - 4*x + 2)^((n - 1)/2)]/E^x, {x, 0, Infinity}];
    a[n_ /; EvenQ[n]] := With[{m = n/2}, m*(x[2*m] - (2*m - 3)*x[2*m - 1])];
    a[n_ /; OddQ[n]] := With[{m = (n - 1)/2}, (2*m + 1)*x[2*m] + 3*m*x[2*m - 1] - 2*m*(m - 1)*x[2*m - 2]];
    Table[a[n], {n, 0, 21}] // Quiet (* Jean-François Alcover, Jun 29 2018 *)
  • PARI
    a(n) = {my(v = vector(n)); \\ v is A003471
    for(n=4, length(v), v[n] = (n-1)*v[n-1] + 2*if(n%2==1, (n-1)*v[n-2], (n-2) * if(n==4,1,v[n-4])));
    if(n<4, [1,0,0][n], if(n%2==0, n*(v[n] - (n-3)*v[n-1]), 2*n*v[n-1] + 3*(n-1)*v[n-2] - (n-1)*(n-3)*v[n-3])/2)} \\ Andrew Howroyd, Sep 12 2017

Formula

a(2*m) = m*(x(2*m) - (2*m-3)*x(2*m-1)), a(2*m+1) = (2*m+1)*x(2*m) + 3*m*x(2*m-1) - 2*m*(m-1)*x(2*m-2), where x(n) = A003471(n).
Conjecture D-finite with recurrence (365968635435167109808*n^2 -5566069866485493251505*n +20525522573033552369132)*a(n) +(-1215369044326430542311*n^2 +19103429957352794982854*n -73690801030090785944295)*a(n-1) +(-365968635435167109808*n^4 +6663975772790994580929*n^3 -35836353442786038818589*n^2 +34878550744402035813586*n +124043542472821007763204)*a(n-2) +(483431773456096322695*n^4 -10754417727097457203127*n^3 +85154149458907095778621*n^2 -277683967994722584206067*n +286254870342835757751852)*a(n-3) +2*(-393241909113483884738*n^4 +9142334951839265043383*n^3 -78427160779754271402777*n^2 +309283968160862567580813*n -465057422344277141977923)*a(n-4) +2*(-745044547502580209919*n^4 +21471238686323774026196*n^3 -222067832543690193789255*n^2 +944698954932049830084232*n -1372732531859619119793978)*a(n-5) +4*(365968635435167109808*n^4 -5227374504728642916627*n^3 +19793104565012302929789*n^2 +391834816007939927082*n -57365695502678698166146)*a(n-6) +4*(-483431773456096322695*n^4 +7592214312314395379733*n^3 -45284933032689911393913*n^2 +117535885088909103449165*n -84799883220517633629252)*a(n-7) +8*(n-7)*(393241909113483884738*n^3 -4789400677912625536335*n^2 +17834478528905815208536*n -23668675533486426523455)*a(n-8) +8*(n-7)*(n-8)*(745044547502580209919*n^2 -6086915962816073505121*n +12854159797389104313178)*a(n-9)=0. - R. J. Mathar, Feb 27 2025

A292080 Number of nonequivalent ways to place n non-attacking rooks on an n X n board with no rook on 2 main diagonals up to rotations and reflections of the board.

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 14, 84, 630, 6096, 55336, 672160, 7409300, 104999520, 1366363752, 22068387264, 331233939624, 6005919062528, 102144359744192, 2054811316442112, 39053339674065360, 863259240785840640, 18132529836143846560, 436899062862222484480
Offset: 0

Views

Author

Andrew Howroyd, Sep 12 2017

Keywords

Comments

For odd n, there are no symmetrical configurations of non-attacking rooks without a rook in the main diagonal, so a(2n+1) = A003471(2n+1) / 8. For even n, configurations with rotational and diagonal symmetry are possible.

Examples

			Case n=4: The 2 nonequivalent solutions are:
   _ x _ _     _ x _ _
   x _ _ _     _ _ _ x
   _ _ _ x     x _ _ _
   _ _ x _     _ _ x _
Case n=5: The 2 nonequivalent solutions are:
   _ x _ _ _   _ x _ _ _
   x _ _ _ _   _ _ _ _ x
   _ _ _ x _   x _ _ _ _
   _ _ _ _ x   _ _ x _ _
   _ _ x _ _   _ _ _ x _
		

Crossrefs

Programs

  • Mathematica
    sf[n_] := n! * SeriesCoefficient[Exp[-x ] / (1 - x), {x, 0, n}];
    F[n_] := (Clear[v]; v[_] = 0; For[m = 4, m <= n, m++, v[m] = (m - 1)*v[m - 1] + 2*If[OddQ[m], (m - 1)*v[m - 2], (m - 2)*If[m == 4, 1, v[m - 4]]]]; v[n]);
    d[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(2k)!/(2^k*k!), {k, 0, n}];
    R[n_] := If[OddQ[n], 0, (n - 1)!*2/(n/2 - 1)!];
    a[0] = 1; a[n_] := (F[n] + If[OddQ[n], 0, m = n/2; 2^m * sf[m] + 2*R[m] + 2*d[m]])/8;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
  • PARI
    \\ here sf is A000166, F is A003471, D is A053871, R(n) is A037224(2n).
    sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}
    F(n) = {my(v = vector(n)); for(n=4,length(v),v[n]=(n-1)*v[n-1]+2*if(n%2==1,(n-1)*v[n-2],(n-2)*if(n==4,1,v[n-4]))); v[n]}
    D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))}
    R(n) = {if(n%2==1, 0, (n-1)!*2/(n/2-1)!)}
    a(n) = {(F(n) + if(n%2==1, 0, my(m=n/2); 2^m * sf(m) + 2*R(m) + 2*D(m)))/8}

Formula

a(2n+1) = A003471(2n+1) / 8, a(2n) = (A003471(2n) + 2^n * A000166(n) + 2*A037224(2*n) + 2*A053871(n)) / 8.
Showing 1-2 of 2 results.