cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064299 a(n) = B(n)*C(n), where B(n) are Bell numbers (A000110) and C(n) are Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 4, 25, 210, 2184, 26796, 376233, 5920200, 102816714, 1947916100, 39890416020, 876478739164, 20537052247300, 510548782729680, 13407568735200525, 370553407586717490, 10742998644116921160, 325786278993936753300, 10307990595756667951830
Offset: 0

Views

Author

Karol A. Penson, Sep 05 2001

Keywords

Comments

From Joerg Arndt, Oct 22 2012: (Start)
Number of strings of length 2*n of up to n different types t(k) of balanced parentheses, where the first appearance of type t(k) must precede the appearance of t(k+1) for all k
For example, from the 5 parenthesis string of length 3
1: ()()(); 2: ()(()); 3: (())(); 4: (()()); 5: ((())).
we obtain the B(3) * C(3) = 5 * 5 = 25 strings
1: ()()(), ()()[], ()[](), ()[][], ()[]{};
2: ()(()), ()([]), ()[()], ()[[]], ()[{}];
3: (())(), (())[], ([])(), ([])[], ([]){};
4: (()()), (()[]), ([]()), ([][]), ([]{});
5: ((())), (([])), ([()]), ([[]]), ([{}]).
(End)

Crossrefs

Row sums of A253180.

Programs

  • Maple
    with(combinat):
    ctln:= proc(n) option remember; binomial(2*n, n)/(n+1) end:
    a:= n-> bell(n)*ctln(n):
    seq(a(n), n=0..25);  # Alois P. Heinz, Mar 23 2015
  • Mathematica
    a[n_] := BellB[n]*CatalanNumber[n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Feb 25 2017 *)
  • Python
    from itertools import count, accumulate, islice
    def A064299_gen(): # generator of terms
        yield from (1,1)
        blist, b, m = (1,2), 1, 1
        for n in count(1):
            blist = list(accumulate(blist, initial=(b:=blist[-1])))
            yield b*(m := m*(4*n+2)//(n+2))
    A064299_list = list(islice(A064299_gen(),20)) # Chai Wah Wu, Jun 22 2022
  • Sage
    [bell_number(i)*catalan_number(i) for i in range(17)] # Zerinvary Lajos, Mar 14 2009
    

Formula

Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n) = int(x^n*sum(sqrt((4*k-x)/x)*Heaviside(4*k-x)/(k*k!), k = 1..infinity)/(2*Pi*exp(1)), x = 0..infinity); this representation is unique.