A064325 Generalized Catalan numbers C(-3; n).
1, 1, -2, 13, -98, 826, -7448, 70309, -686090, 6865150, -70057772, 726325810, -7628741204, 81002393668, -868066319108, 9376806129493, -101988620430938, 1116026661667318, -12277755319108748, 135715825209716038, -1506587474535945788, 16789107646422189868, -187747069029477151328
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..850
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (7 +Sqrt(1+12*x))/(2*(4-x)) )); // G. C. Greubel, May 03 2019 -
Mathematica
a[0] = 1; a[n_] := Sum[(n-m) Binomial[n+m-1, m] (-3)^m/n, {m, 0, n-1}]; Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Jul 30 2018 *) CoefficientList[Series[(7 +Sqrt[1+12*x])/(2*(4-x)), {x, 0, 30}], x] (* G. C. Greubel, May 03 2019 *)
-
PARI
a(n) = if (n==0, 1, sum(m=0, n-1, (n-m)*binomial(n-1+m, m)*(-3)^m/n)); \\ Michel Marcus, Jul 30 2018
-
PARI
my(x='x+O('x^30)); Vec((7 +sqrt(1+12*x))/(2*(4-x))) \\ G. C. Greubel, May 03 2019
-
Sage
def a(n): if n == 0: return 1 return hypergeometric([1-n, n], [-n], -3).simplify() [a(n) for n in range(24)] # Peter Luschny, Nov 30 2014
-
Sage
((7 +sqrt(1+12*x))/(2*(4-x))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 03 2019
Formula
a(n) = Sum_{m=0..n-1} (n-m)*binomial(n-1+m, m)*(-3)^m/n.
a(n) = (1/4)^n*(1 + 3*Sum_{k=0..n-1} C(k)*(-3*4)^k), n >= 1, a(0) = 1; with C(n) = A000108(n) (Catalan).
G.f.: (1+3*x*c(-3*x)/4)/(1-x/4) = 1/(1-x*c(-3*x)) with c(x) g.f. of Catalan numbers A000108.
a(n) = hypergeometric([1-n, n], [-n], -3) for n>0. - Peter Luschny, Nov 30 2014
Comments