A064353 Kolakoski-(1,3) sequence: the alphabet is {1,3}, and a(n) is the length of the n-th run.
1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3, 3, 1, 3, 1, 3, 3, 3, 1, 1, 1, 3, 3
Offset: 1
References
- E. Angelini, "Jeux de suites", in Dossier Pour La Science, pp. 32-35, Volume 59 (Jeux math'), April/June 2008, Paris.
- F. M. Dekking: "What is the long range order in the Kolakoski sequence?" in: The Mathematics of Long-Range Aperiodic Order, ed. R. V. Moody, Kluwer, Dordrecht (1997), pp. 115-125.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Michael Baake and Bernd Sing, Kolakoski-(3,1) is a (deformed) model set, arXiv:math/0206098 [math.MG], 2002-2003.
- William Cook, A Recursive Block Pillar Structure in the Kolakoski Sequence K(1,3), arXiv:2504.13433 [math.CO], 2025.
- F. M. Dekking, On the structure of self-generating sequences, Seminar on Number Theory, 1980-1981 (Talence, 1980-1981), Exp. No. 31, 6 pp., Univ. Bordeaux I, Talence, 1981. Math. Rev. 83e:10075.
- F. M. Dekking, What Is the Long Range Order in the Kolakoski Sequence?, Report 95-100, Technische Universiteit Delft, 1995.
- Ulrich Reitebuch, Henriette-Sophie Lipschütz, and Konrad Polthier, Visualizing the Kolakoski Sequence, Bridges Conf. Proc.; Math., Art, Music, Architecture, Culture (2023) 481-484.
- Jaap Spies, A Bit of Math, The Art of Problem Solving, Jaap Spies Publishers (2019).
- UWC, Opgave A (solution)
Crossrefs
Programs
-
Haskell
-- from John Tromp's a000002.hs a064353 n = a064353_list !! (n-1) a064353_list = 1 : 3 : drop 2 (concat . zipWith replicate a064353_list . cycle $ [1, 3]) -- Reinhard Zumkeller, Aug 02 2013
-
MATLAB
A = [1 3 3 3]; i = 3; next = 1; while length(A) < 140 A = [A next*ones(1, A(i))]; i = i + 1; next = 4 - next; end
-
Mathematica
A = {1, 3, 3, 3}; i = 3; next = 1; While[Length[A] < 140, A = Join[A, next*Array[1&, A[[i]]]]; i++; next = 4-next]; A (* Jean-François Alcover, Nov 12 2016, translated from MATLAB *)
Extensions
More terms from David Wasserman, Jul 16 2002
Edited by Charles R Greathouse IV, Apr 20 2010
Restored the original definition, following a suggestion from Jianing Song. - N. J. A. Sloane, May 13 2021
Comments