A064383 Integers n >= 1 such that n divides 0!-1!+2!-3!+4!-...+(-1)^{n-1}(n-1)!.
1, 2, 4, 5, 10, 13, 20, 26, 37, 52, 65, 74, 130, 148, 185, 260, 370, 463, 481, 740, 926, 962, 1852, 1924, 2315, 2405, 4630, 4810, 6019, 9260, 9620, 12038, 17131, 24076, 30095, 34262, 60190, 68524, 85655, 120380, 171310, 222703, 342620, 445406, 890812, 1113515
Offset: 1
Examples
4 is in the sequence because 4 divides 0!-1!+2!-3!=1-1+2-6=-4.
References
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer-Verlag, 2004, B43.
Links
- J. Sondow, The Taylor series for e and the primes 2, 5, 13, 37, 463: a surprising connection
- J. Sondow and K. Schalm, Which partial sums of the Taylor series for e are convergents to e? (and a link to the primes 2, 5, 13, 37, 463), II, Gems in Experimental Mathematics (T. Amdeberhan, L. A. Medina, and V. H. Moll, eds.), Contemporary Mathematics, vol. 517, Amer. Math. Soc., Providence, RI, 2010.
- Index entries for sequences related to factorial numbers
Programs
-
Mathematica
s = 0; Do[ s = s + (-1)^(n)(n)!; If[ Mod[ s, n + 1 ] == 0, Print[ n + 1 ] ], {n, 0, 600000} ] Divisors[4454060] (* From Formula above *) (* Harvey P. Dale, Aug 09 2012 *)
Formula
Up to n=600000, these are just the divisors of 4*5*13*37*463.
Extensions
More terms from Sean A. Irvine, Jul 02 2023
Comments