A064397 Numbers k such that prime(k) + prime(k+1) is a square.
7, 15, 20, 61, 152, 190, 293, 377, 492, 558, 789, 919, 942, 1768, 2343, 2429, 2693, 2952, 3136, 3720, 4837, 5421, 5722, 6870, 7347, 8126, 8193, 9465, 9857, 9927, 10410, 10483, 10653, 12685, 13763, 13955, 16033, 16342, 17859, 18367, 18474
Offset: 1
Keywords
Examples
For k=15: prime(15) = 47 and prime(16) = 53, 47 + 53 = 100 = 10^2.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Zak Seidov)
Crossrefs
Programs
-
Magma
[n: n in [0..50000]| IsSquare(NthPrime(n) +NthPrime(n+1))]; // Vincenzo Librandi, Apr 06 2011
-
Mathematica
lst={};Do[p1=Prime[n];p2=Prime[n+1];q=(p1+p2)^0.5;If[q==IntegerPart[q], AppendTo[lst, n]], {n, 1, 9!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 02 2008 *)
-
PARI
j=[]; for(n=1,30000,x=prime(n)+prime(n+1); if(issquare(x),j=concat(j,n))); j
-
PARI
{ n=0; default(primelimit, 8500000); for (m=1, 10^9, if (issquare(prime(m) + prime(m + 1)), write("b064397.txt", n++, " ", m); if (n==175, break)) ) } \\ Harry J. Smith, Sep 13 2009
Formula
a(n) >> n^2/log^2 n. - Charles R Greathouse IV, Mar 08 2025