cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064405 Number of even entries (A048967) minus the number of odd entries (A001316) in row n of Pascal's triangle (A007318).

Original entry on oeis.org

-1, -2, -1, -4, 1, -2, -1, -8, 5, 2, 3, -4, 5, -2, -1, -16, 13, 10, 11, 4, 13, 6, 7, -8, 17, 10, 11, -4, 13, -2, -1, -32, 29, 26, 27, 20, 29, 22, 23, 8, 33, 26, 27, 12, 29, 14, 15, -16, 41, 34, 35, 20, 37, 22, 23, -8, 41, 26, 27, -4, 29, -2, -1, -64, 61, 58, 59, 52, 61, 54, 55, 40, 65, 58, 59, 44, 61, 46, 47, 16, 73, 66, 67, 52, 69, 54
Offset: 0

Views

Author

Robert G. Wilson v, Sep 29 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ n + 1 - 2Sum[ Mod[ Binomial[ n, k ], 2 ], {k, 0, n} ], {n, 0, 100} ]
  • PARI
    a(n)=sum(i=0,n,(-1)^binomial(n,i))
    
  • PARI
    a(n)=if(n<1,-1,if(n%2==0,a(n/2)+n/2,2*a((n-1)/2)))

Formula

a(n) = Sum_{k=0..n} (-1)^binomial(n, k); a(2^n) = 2^n-3; a(2^n+1)=2^n-6; more generally there's a sequence z(k) such that for any k>=0 and for 2^n >k, a(2^n+k) = 2^n+z(k); for k=0, 1, 2, 3, 4, 5, 6, 7, 8... z(k) = -3, -6, -5, -12, -3, -10, -9, -24, 1, ... - Benoit Cloitre, Oct 18 2002
a(2n) = a(n) + n, a(2n+1) = 2a(n). - Ralf Stephan, Mar 05 2004
a(n) = -Sum_{k=0..n} moebius(binomial(n, k) mod 2). - Paul Barry, Apr 29 2005
a(2^n-1) = -2^n. - Seiichi Manyama, Aug 24 2022