A016283
a(n) = 6^n/8 - 4^(n-1) + 2^(n-3).
Original entry on oeis.org
0, 0, 1, 12, 100, 720, 4816, 30912, 193600, 1194240, 7296256, 44301312, 267904000, 1615810560, 9728413696, 58504691712, 351565004800, 2111537479680, 12677814747136, 76101248090112, 456744927232000
Offset: 0
-
[6^n/8 - 4^(n-1) + 2^(n-3): n in [0..25]]; // Vincenzo Librandi, Apr 26 2011
-
[seq(9/2*6^n-4*4^n+1/2*2^n,n=0..20)]; # Detlef Pauly (dettodet(AT)yahoo.de), Dec 04 2001
-
CoefficientList[Series[x^2/((1 - 2 x) (1 - 4 x) (1 - 6 x)), {x, 0, 20}], x] (* Michael De Vlieger, Jan 31 2018 *)
-
[((6^n - 2^n)/4-(4^n - 2^n)/2)/2 for n in range(0,21)] # Zerinvary Lajos, Jun 05 2009
A065246
Formal neural networks with n components.
Original entry on oeis.org
1, 4, 196, 1124864, 12545225621776, 7565068551396549351877632, 11519413104737198429297238164593057431690816, 3940200619639447921227904010014361380507973927046544666794829340424572177149721061141426654884915640806627990306816
Offset: 0
For n=2 the 14 threshold gates determine 14*14=196 neural nets each built purely from threshold gates. For n=3, 104=A000609(3) formal neurons gives 104^3=a(3) networks, all component functions of which are linearly separable {0,1}^3 -> {0,1} vector-scalar functions.
- Labos E. (1996): Long Cycles and Special Categories of Formal Neuronal Networks. Acta Biologica Hungarica, 47: 261-272.
- Labos E. and Sette M. (1995): Long Cycle Generation by McCulloch-Pitts Networks(MCP-Nets) with Dense and Sparse Weight Matrices. Proc. of BPTM, McCulloch Memorial Conference [eds:Moreno-Diaz R. and Mira-Mira J., pp. 350-359.], MIT Press, Cambridge,MA,USA.
- McCulloch, W. S. and Pitts W. (1943): A Logical Calculus Immanent in Nervous Activity. Bull. Math. Biophys. 5:115-133.
A065247
Imperfect formal neural networks with n components.
Original entry on oeis.org
0, 0, 60, 15652352, 18446731528483929840, 1461501637330902918203677267647731623106580665344, 3940200619639447921227904010014361380507973
Offset: 0
For n = 2 the 14 threshold gates determine 14*14 = 196 neural nets each built purely from threshold gates; the remaining 2^(2*4)-14^2 = 256-196 = 60 = a(2) functions are synthesized from both neurons and non-neurons. For n = 3, 104 = A000609(3) formal neurons and 152 non-neurons gives (2^24)-A065246(3) = 15652352 = a(4) nets with at least one linearly non-separable component.
- Labos E. (1996): Long Cycles and Special Categories of Formal Neuronal Networks. Acta Biologica Hungarica, 47: 261-272.
- Labos E. and Sette M.(1995): Long Cycle Generation by McCulloch-Pitts Networks(MCP-Nets) with Dense and Sparse Weight Matrices. Proc. of BPTM, McCulloch Memorial Conference [eds:Moreno-Diaz R. and Mira-Mira J., pp. 350-359.], MIT Press, Cambridge,MA,USA.
- McCulloch WS and Pitts W (1943): A Logical Calculus Immanent in Nervous Activity. Bull.Math.Biophys. 5:115-133.
A065248
Networks with n components.
Original entry on oeis.org
0, 4, 3511808, 16417340254783504656, 1461340738496783113671688672284985566897802138624, 3940200619620187981589093886506105584397793947159777
Offset: 1
For n=2 XOR and its negation are non-neurons, providing 4 networks, all of which permutations are distinguished from each other. For n=3, 152=A064436(3) switching functions are non-neurons, so 152^3=3511808 networks are constructible without formal neurons as component-functions.
- Labos E. (1996): Long Cycles and Special Categories of Formal Neuronal Networks. Acta Biologica Hungarica, 47: 261-272.
- Labos E. and Sette M.(1995): Long Cycle Generation by McCulloch-Pitts Networks(MCP-Nets) with Dense and Sparse Weight Matrices. Proc. of BPTM, McCulloch Memorial Conference [eds:Moreno-Diaz R. and Mira-Mira J., pp. 350-359.], MIT Press, Cambridge,MA,USA.
- McCulloch WS and Pitts W (1943): A Logical Calculus Immanent in Nervous Activity. Bull.Math.Biophys. 5:115-133.
Showing 1-4 of 4 results.
Comments