A064442 Decimal expansion of number with continued fraction expansion 2, 3, 5, 7, 11, 13, 17, 19, ... = 2.3130367364335829063839516 ...
2, 3, 1, 3, 0, 3, 6, 7, 3, 6, 4, 3, 3, 5, 8, 2, 9, 0, 6, 3, 8, 3, 9, 5, 1, 6, 0, 2, 6, 4, 1, 7, 8, 2, 4, 7, 6, 3, 9, 6, 6, 8, 9, 7, 7, 1, 8, 0, 3, 2, 5, 6, 3, 4, 0, 2, 1, 0, 1, 2, 4, 4, 4, 2, 1, 4, 4, 5, 6, 4, 7, 3, 1, 7, 7, 6, 2, 7, 2, 2, 4, 3, 6, 9, 5, 3, 2, 2, 0, 1, 7, 2, 3, 8, 3, 2, 8, 1, 7, 4, 5, 3, 0, 1, 5, 8, 2
Offset: 1
Examples
2.313036736433582906383951602641782476396689771803256340210124442144564731776...
Links
Programs
-
Mathematica
RealDigits[ N[ FromContinuedFraction[ Table[ Prime[n], {n, 1, 100} ]], 100]] [[1]] RealDigits[FromContinuedFraction[Prime[Range[200]]],10,120][[1]] (* Harvey P. Dale, Sep 06 2021 *)
Formula
1/A084255. - Franklin T. Adams-Watters, Jul 31 2009
From Peter Bala, Nov 26 2019: (Start)
Denoting the constant by c we have the related simple continued fraction expansions (prime(n) denotes the n-th prime number):
2*c = [4; 1, 1, 1, 2, 14, 5, 1, 1, 6, 34, 9, 1, 1, 11, 58, 15, 1, 1, 18, 82, 21, ..., 1, 1, (prime(3*n) - 1)/2, 2*prime(3*n+1), (prime(3*n+2) - 1)/2, ...];
(1/2)*c = [1; 6, 2, 1, 1, 3, 22, 6, 1, 1, 8, 38, 11, 1, 1, 14, 62, 18, 1, 1, 20, 86, 23, ..., 1, 1, (prime(3*n+1) - 1)/2, 2*prime(3*n+2), (prime(3*n+3) - 1)/2, ...];
(c + 1)/(c - 1) = [2; 1, 1, 10, 3, 1, 1, 5, 26, 8, 1, 1, 9, 46, 14, 1, 1, 15, 74, 20, ..., 1, 1, (prime(3*n+2) - 1)/2, 2*prime(3*n+3), (prime(3*n+4) - 1)/2, ...]. (End)
Comments