cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A366821 a(n) is phi(n^n-1) where phi is the Euler totient function.

Original entry on oeis.org

2, 12, 128, 1400, 30240, 264992, 6635520, 141087744, 5890320000, 114117380608, 4662793175040, 99053063903040, 5470524984113280, 167080949856000000, 9208981628670443520, 413582117375670921216, 29531731481729468006400, 659473218553437863041320
Offset: 2

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> numtheory[phi](n^n-1):
    seq(a(n), n=2..20);  # Alois P. Heinz, Oct 26 2023
  • Mathematica
    Array[EulerPhi[#^# - 1] &, 18, 2] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = eulerphi(n^n-1);

Formula

a(n) = A000010(A048861(n)).

A366822 a(n) is phi(n^n + 1) where phi is the Euler totient function.

Original entry on oeis.org

1, 1, 4, 12, 256, 1040, 41472, 407680, 16515072, 152845056, 9897840000, 89493288192, 8732596764672, 129785922489600, 10576701872701440, 210729768933600000, 18446676793287966720, 275746753962112254720, 28084363369373740400640, 791359800910482004224000
Offset: 0

Views

Author

Sean A. Irvine, Oct 24 2023

Keywords

Crossrefs

Programs

  • Mathematica
    {1}~Join~Array[EulerPhi[#^# + 1] &, 19] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    a(n) = eulerphi(n^n+1);

Formula

a(n) = A000010(A014566(n)).

A276035 Least k such that n divides phi(k^k) (k > 0).

Original entry on oeis.org

1, 2, 3, 4, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 15, 4, 17, 3, 19, 5, 7, 11, 23, 6, 5, 13, 6, 14, 29, 15, 31, 4, 33, 17, 35, 6, 37, 19, 13, 10, 41, 7, 43, 22, 15, 23, 47, 6, 7, 5, 51, 13, 53, 6, 11, 14, 19, 29, 59, 15, 61, 31, 21, 4, 65, 33, 67, 17, 69, 35
Offset: 1

Views

Author

Altug Alkan, Aug 16 2016

Keywords

Comments

The first term that has 3 prime divisors is a(240) = 2*3*5.

Examples

			a(9) = 3 because 9 divides phi(3^3) = 18.
		

Crossrefs

Cf. A064447.

Programs

  • PARI
    a(n)=my(k = 1); while(eulerphi(k^k) % n, k++); k;
    
  • PARI
    a(n)=my(k=1); while(eulerphi(k)*Mod(k,n)^(k-1), k++); k \\ Charles R Greathouse IV, Aug 16 2016

Formula

(log n)/W(log n) < a(n) <= n for n > 1. - Charles R Greathouse IV, Aug 16 2016

A276040 Least k such that n^n divides phi(k^k) (k > 0).

Original entry on oeis.org

1, 4, 6, 8, 10, 12, 14, 12, 18, 20, 22, 24, 26, 28, 30, 24, 34, 36, 38, 40, 42, 44, 46, 36, 50, 52, 45, 56, 58, 60, 62, 48, 66, 68, 70, 72, 74, 76, 78, 60, 82, 84, 86, 88, 90, 92, 94, 72, 98, 100, 102, 104, 106, 90, 110, 84, 114, 116, 118, 120
Offset: 1

Views

Author

Altug Alkan, Aug 17 2016

Keywords

Comments

Indices of odd terms in this sequence are 1, 27, 81, 135, 189, 297, 343, 351, 405, 459, 513, 621, 625, 675, 783, ...

Examples

			a(3) = 6 because 3^3 divides phi(6^6) = 15552.
		

Crossrefs

Cf. A064447.

Programs

  • Mathematica
    Table[k = 1; While[! Divisible[EulerPhi[k^k], n^n], k++]; k, {n, 60}] (* Michael De Vlieger, Aug 21 2016 *)
  • PARI
    a(n) = {my(k = 1); while(eulerphi(k^k) % n^n, k++); k; }
Showing 1-4 of 4 results.