cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064487 Order of twisted Suzuki group Sz(2^(2*n + 1)), also known as the group 2B2(2^(2*n + 1)).

Original entry on oeis.org

20, 29120, 32537600, 34093383680, 35115786567680, 36011213418659840, 36888985097480437760, 37777778976635853209600, 38685331082014736871587840, 39614005699412557795646504960, 40564799864499450381466515537920
Offset: 0

Views

Author

Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Oct 15 2001

Keywords

Comments

Every term in A056866 is divisible by 12 or 20. Those terms that are not divisible by 12 are divisible by a term from this sequence. - Charles R Greathouse IV via Danny Rorabaugh, Apr 21 2015
For n >= 3, a(n) has at least 5 distinct prime factors. See my link for a proof. - Jianing Song, Apr 04 2022

References

  • R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
  • J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].

Crossrefs

Cf. A037250, A064583. A257391 is a subsequence.

Programs

  • GAP
    g := Sz(32); s := Size(g);
    
  • Magma
    [ #Sz(2^(2*n+1)) : n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
    
  • Mathematica
    LinearRecurrence[{1360,-365568,22282240,-268435456},{20,29120,32537600,34093383680},20] (* Harvey P. Dale, Sep 08 2018 *)
  • PARI
    a(n)=my(t=2^(2*n+1)); t^2*(t-1)*(t^2+1) \\ Charles R Greathouse IV, Apr 21 2015
    
  • PARI
    Vec(20*(1+128*x)*(1-32*x+16384*x^2)/((1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)) + O(x^20)) \\ Colin Barker, Dec 25 2015

Formula

a(n) = q^4*(q^2-1)*(q^4+1), where q^2 = 2^(2*n+1).
G.f.: 20*(1+128*x)*(1-32*x+16384*x^2) / ((1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)). - Colin Barker, Dec 25 2015