A064487 Order of twisted Suzuki group Sz(2^(2*n + 1)), also known as the group 2B2(2^(2*n + 1)).
20, 29120, 32537600, 34093383680, 35115786567680, 36011213418659840, 36888985097480437760, 37777778976635853209600, 38685331082014736871587840, 39614005699412557795646504960, 40564799864499450381466515537920
Offset: 0
References
- R. W. Carter, Simple Groups of Lie Type, Wiley 1972, Chap. 14.
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites].
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985 [for best online version see https://oeis.org/wiki/Welcome#Links_to_Other_Sites], p. xvi. See ATLAS v. 3
- Jianing Song, Proof that a(n) has at least 5 distinct prime factors for n >= 3
- Michio Suzuki, A new type of simple groups of finite order, Proc Natl Acad Sci U S A. 46:6 (1960), pp. 868-870.
- Index entries for linear recurrences with constant coefficients, signature (1360,-365568,22282240,-268435456).
Programs
-
GAP
g := Sz(32); s := Size(g);
-
Magma
[ #Sz(2^(2*n+1)) : n in [0..10]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006
-
Mathematica
LinearRecurrence[{1360,-365568,22282240,-268435456},{20,29120,32537600,34093383680},20] (* Harvey P. Dale, Sep 08 2018 *)
-
PARI
a(n)=my(t=2^(2*n+1)); t^2*(t-1)*(t^2+1) \\ Charles R Greathouse IV, Apr 21 2015
-
PARI
Vec(20*(1+128*x)*(1-32*x+16384*x^2)/((1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)) + O(x^20)) \\ Colin Barker, Dec 25 2015
Formula
a(n) = q^4*(q^2-1)*(q^4+1), where q^2 = 2^(2*n+1).
G.f.: 20*(1+128*x)*(1-32*x+16384*x^2) / ((1-16*x)*(1-64*x)*(1-256*x)*(1-1024*x)). - Colin Barker, Dec 25 2015
Comments