cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A109470 Sum of first n noncubes.

Original entry on oeis.org

2, 5, 9, 14, 20, 27, 36, 46, 57, 69, 82, 96, 111, 127, 144, 162, 181, 201, 222, 244, 267, 291, 316, 342, 370, 399, 429, 460, 492, 525, 559, 594, 630, 667, 705, 744, 784, 825, 867, 910, 954, 999, 1045, 1092, 1140, 1189, 1239, 1290, 1342, 1395, 1449, 1504, 1560
Offset: 1

Views

Author

Jonathan Vos Post, Aug 28 2005

Keywords

Examples

			a(6) = 2 + 3 + 4 + 5 + 6 + 7 = 27.
a(7) = 2 + 3 + 4 + 5 + 6 + 7 + 9 = 36.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[With[{no=60},Complement[Range[no],Range[Floor[Power[no, (3)^-1]]]^3]]]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    a(n) = sum(i=1, n, i + sqrtnint(i + sqrtnint(i, 3), 3)); \\ Michel Marcus, Jun 20 2024
  • Python
    from sympy import integer_nthroot
    def A109470(n): return ((m:=n+(k:=integer_nthroot(n,3)[0])+int(n>=(k+1)**3-k))*(m+1)>>1)-((r:=integer_nthroot(m,3)[0])*(r+1)>>1)**2 # Chai Wah Wu, Jun 17 2024
    

Formula

a(n) = Sum_{i=1..n} A007412(i).
a(n) = A000217(A007412(n)) - Sum_{i=1..floor((A007412(n)^(1/3)))} i^3.
a(n) = A000217(A007412(n)) - A000217(floor(A007412(n)^(1/3)))^2.
Let R = A007412(n) and S = floor(R^(1/3)); then a(n) = (R*(R+1))/2 - ((S*(S+1))/2)^2. - Gerald Hillier, Dec 21 2008

A139179 Number of non-fourth-powers <= n.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70
Offset: 0

Views

Author

Jonathan Vos Post, Jun 06 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := n - Floor[n^(1/4)]; a /@ Range[0, 72] (* Giovanni Resta, Jun 21 2016 *)
  • Python
    from sympy import integer_nthroot
    def A139179(n): return n-integer_nthroot(n,4)[0] # Chai Wah Wu, Jun 18 2024

Formula

a(n) = n - floor(n^(1/4)).

Extensions

Offset corrected by Giovanni Resta, Jun 21 2016
Showing 1-2 of 2 results.