cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A064532 Total number of holes in decimal expansion of the number n, assuming 4 has no hole.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 1, 0, 0, 0, 0, 0, 1, 0, 2, 1, 3, 2, 2, 2, 2, 2, 3, 2, 4, 3, 2, 1, 1, 1, 1, 1, 2, 1, 3, 2, 2, 1, 1, 1, 1
Offset: 0

Views

Author

N. J. A. Sloane, Oct 07 2001

Keywords

Comments

Assumes that 4 is represented without a hole.

Examples

			8 has two holes so a(8) = 2.
		

Crossrefs

Cf. A064529, A064530. Equals A064531 - 1.
Cf. A358439 (sum by number of digits).

Programs

  • Mathematica
    a[n_ /; 0 <= n <= 9] := a[n] = {1, 0, 0, 0, 0, 0, 1, 0, 2, 1}[[n + 1]]; a[n_] := Total[a[#] + 1 &  /@ (id = IntegerDigits[n])] - Length[id];  Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Nov 22 2013 *)
    Table[DigitCount[x].{0, 0, 0, 0, 0, 1, 0, 2, 1, 1}, {x, 0, 104}] (* Michael De Vlieger, Feb 02 2017, after Zak Seidov at A064692 *)
  • PARI
    h(n) = [1, 0, 0, 0, 0, 0, 1, 0, 2, 1][n];
    a(n) = if (n, my(d=digits(n)); sum(i=1, #d, h(d[i]+1)), 1); \\ Michel Marcus, Nov 11 2022
  • Python
    def A064532(n):
        x=str(n)
        return x.count("0")+x.count("6")+x.count("8")*2+x.count("9") # Indranil Ghosh, Feb 02 2017
    

Formula

a(10i+j) = a(i) + a(j), etc.

Extensions

More terms from Matthew Conroy, Oct 09 2001

A064530 Number of holes in n-th capital letter of English alphabet.

Original entry on oeis.org

1, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

N. J. A. Sloane, Oct 07 2001

Keywords

Examples

			A has one hole, B has two, etc.
		

Crossrefs

Equals A064529 - 1. Cf. A064531, A064532, A208568.

A064529 Number of connected components remaining when n-th letter of English alphabet is cut from a piece of paper.

Original entry on oeis.org

2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 07 2001

Keywords

Crossrefs

Equals A064530 + 1. Cf. A064531, A064532.

A064693 Number of connected components remaining when decimal expansion of the number n is cut from a piece of paper.

Original entry on oeis.org

2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 4, 3, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 3, 2, 2, 2, 3, 2, 3, 2, 4, 3, 2, 1, 1, 1, 2, 1, 2, 1, 3, 2, 4, 3, 3, 3, 4, 3, 4, 3, 5, 4, 3, 2, 2, 2, 3, 2, 3, 2, 4, 3, 3, 2, 2, 2, 3
Offset: 0

Views

Author

Matthew Conroy, Oct 11 2001

Keywords

Examples

			We assume 1,2,3,5 have no hole; 0,4,6,9 have 1 hole; 8 has two holes. So cutting 8 from a piece of paper creates three connected components: one for each hole and one for the remainder of the paper. Hence a(8)=3.
		

Crossrefs

Cf. A064531. Equals A064692 + 1.
Showing 1-4 of 4 results.