A064538 a(n) is the smallest positive integer such that a(n)*(1^n + 2^n + ... + x^n) is a polynomial in x with integer coefficients.
1, 2, 6, 4, 30, 12, 42, 24, 90, 20, 66, 24, 2730, 420, 90, 48, 510, 180, 3990, 840, 6930, 660, 690, 720, 13650, 1092, 378, 56, 870, 60, 14322, 7392, 117810, 7140, 210, 72, 1919190, 103740, 8190, 1680, 94710, 13860, 99330, 9240, 217350, 9660, 9870, 10080, 324870
Offset: 0
Examples
1^3 + 2^3 + ... + x^3 = (x(x+1))^2/4 so a(3)=4. 1^4 + 2^4 + ... + x^4 = x(x+1)(2x+1)(3x^2+3x-1)/30, therefore a(4)=30.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprints), p. 804, Eq. 23.1.4.
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..10000 (n = 0..1000 from T. D. Noe)
- V. S. Abramovich, Power sums of natural numbers, Kvant 5 (1973), 22-25. (in Russian)
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Bernd C. Kellner, On a product of certain primes, J. Number Theory, 179 (2017), 126-141; arXiv:1705.04303 [math.NT], 2017.
- Bernd C. Kellner, On the finiteness of Bernoulli polynomials whose derivative has only integral coefficients, J. Integer Seq. 27 (2024), Article 24.2.8, 11 pp.; arXiv:2310.01325 [math.NT], 2023.
- Bernd C. Kellner and Jonathan Sondow, Power-Sum Denominators, Amer. Math. Monthly, 124 (2017), 695-709; arXiv:1705.03857 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, The denominators of power sums of arithmetic progressions, Integers 18 (2018), #A95, 17 pp.; arXiv:1705.05331 [math.NT], 2017.
- Bernd C. Kellner and Jonathan Sondow, On Carmichael and polygonal numbers, Bernoulli polynomials, and sums of base-p digits, Integers 21 (2021), #A52, 21 pp.; arXiv:1902.10672 [math.NT], 2019.
- Meng Fai Lim, On the p-divisibility of even K-groups of the ring of integers of a cyclotomic field, arXiv:2308.04099 [math.NT], 2023.
- Dr. Math, Summing n^k.
- R. Mestrovic, A congruence modulo n^3 involving two consecutive sums of powers and its applications, arXiv:1211.4570 [math.NT], 2012.
- R. Mestrovic, On a Congruence Modulo n^3 Involving Two Consecutive Sums of Powers, Journal of Integer Sequences, Vol. 17 (2014), 14.8.4.
- G. Michon, Faulhaber's Formula on NUMERICANA.com.
- E. S. Rowland, Sums of Consecutive Powers
- Vladimir Shevelev, A Short Proof of a Known Relation for Consecutive Power Sums, arXiv:0711.3692 [math.CA], 2007.
- Eric Weisstein's World of Mathematics, Power Sum
- Wikipedia, Faulhaber's Formula.
Programs
-
Maple
A064538 := n -> denom((bernoulli(n+1,x)-bernoulli(n+1))/(n+1)): # Peter Luschny, Aug 19 2011 # Formula of Kellner and Sondow (2017): a := proc(n) local s; s := (p,n) -> add(i,i=convert(n,base,p)); select(isprime,[$2..(n+2)/(2+irem(n,2))]); (n+1)*mul(i,i=select(p->s(p,n+1)>=p,%)) end: seq(a(n), n=0..48); # Peter Luschny, May 14 2017
-
Mathematica
A064538[n_] := Denominator[ Together[ (BernoulliB[n+1, x] - BernoulliB[n+1])/(n+1)]]; Table[A064538[n], {n, 0, 44}] (* Jean-François Alcover, Feb 21 2012, after Maple *)
-
PARI
a(n) = {my(vp = Vec(bernpol(n+1, x)-bernfrac(n+1))/(n+1)); lcm(vector(#vp, k, denominator(vp[k])));} \\ Michel Marcus, Feb 07 2016
-
Python
from _future_ import division from sympy.ntheory.factor_ import digits, nextprime def A064538(n): p, m = 2, n+1 while p <= (n+2)//(2+ (n% 2)): if sum(d for d in digits(n+1,p)[1:]) >= p: m *= p p = nextprime(p) return m # Chai Wah Wu, Mar 07 2018
-
Sage
A064538 = lambda n: (n+1)*mul([p for p in (2..(n+2)//(2+n%2)) if is_prime(p) and sum((n+1).digits(base=p)) >= p]) print([A064538(n) for n in (0..48)]) # Peter Luschny, May 14 2017
Formula
a(n) = (n+1)*A195441(n). - Jonathan Sondow, Nov 12 2015
Comments