cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A064538 a(n) is the smallest positive integer such that a(n)*(1^n + 2^n + ... + x^n) is a polynomial in x with integer coefficients.

Original entry on oeis.org

1, 2, 6, 4, 30, 12, 42, 24, 90, 20, 66, 24, 2730, 420, 90, 48, 510, 180, 3990, 840, 6930, 660, 690, 720, 13650, 1092, 378, 56, 870, 60, 14322, 7392, 117810, 7140, 210, 72, 1919190, 103740, 8190, 1680, 94710, 13860, 99330, 9240, 217350, 9660, 9870, 10080, 324870
Offset: 0

Views

Author

Floor van Lamoen, Oct 08 2001

Keywords

Comments

a(n) is a multiple of n+1. - Vladimir Shevelev, Dec 20 2011
Let P_n(x) = 1^n + 2^n + ... + x^n = Sum_{i=1..n+1}c_i*x^i. Let P^*n(x) = Sum{i=1..n+1}(c_i/(i+1))*(x^(i+1)-x). Then b(n) = (n+1)*a(n+1)is the smallest positive integer such that b(n)*P^*n(x) is a polynomial with integer coefficients. Proof follows from the recursion P(n+1)(x) = x + (n+1)*P^*n(x). As a corollary, note that, if p is the maximal prime divisor of a(n), then p<=n+1. - _Vladimir Shevelev, Dec 21 2011
The recursion P_(n+1)(x) = x + (n+1)*P^*n(x) is due to Abramovich (1973); see also Shevelev (2007). - _Jonathan Sondow, Nov 16 2015
The sum S_m(n) = Sum_{k=0..n} k^m can be written as S_m(n) = n(n+1)(2n+1)P_m(n)/a(m) for even m>1, or S_m(n) = n^2*(n+1)^2*P_m(n)/a(m) for odd m>1, where a(m) is the LCM of the denominators of the coefficients of the polynomial P_m/a(m), i.e., the smallest integer such that P_m defined in this way has integer coefficients. (Cf. Michon link.) - M. F. Hasler, Mar 10 2013
a(n)/(n+1) is squarefree, by Faulhaber's formula and the von Staudt-Clausen theorem on the denominators of Bernoulli numbers. - Kieren MacMillan and Jonathan Sondow, Nov 20 2015
a(n) equals n+1 times the product of the primes p <= (n+2)/(2+(n mod 2)) such that the sum of the base-p digits of n+1 is at least p. - Bernd C. Kellner and Jonathan Sondow, May 24 2017

Examples

			1^3 + 2^3 + ... + x^3 = (x(x+1))^2/4 so a(3)=4.
1^4 + 2^4 + ... + x^4 = x(x+1)(2x+1)(3x^2+3x-1)/30, therefore a(4)=30.
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprints), p. 804, Eq. 23.1.4.

Crossrefs

Programs

  • Maple
    A064538 := n -> denom((bernoulli(n+1,x)-bernoulli(n+1))/(n+1)): # Peter Luschny, Aug 19 2011
    # Formula of Kellner and Sondow (2017):
    a := proc(n) local s; s := (p,n) -> add(i,i=convert(n,base,p));
    select(isprime,[$2..(n+2)/(2+irem(n,2))]);
    (n+1)*mul(i,i=select(p->s(p,n+1)>=p,%)) end: seq(a(n), n=0..48); # Peter Luschny, May 14 2017
  • Mathematica
    A064538[n_] := Denominator[ Together[ (BernoulliB[n+1, x] - BernoulliB[n+1])/(n+1)]];
    Table[A064538[n], {n, 0, 44}] (* Jean-François Alcover, Feb 21 2012, after Maple *)
  • PARI
    a(n) = {my(vp = Vec(bernpol(n+1, x)-bernfrac(n+1))/(n+1)); lcm(vector(#vp, k, denominator(vp[k])));} \\ Michel Marcus, Feb 07 2016
    
  • Python
    from _future_ import division
    from sympy.ntheory.factor_ import digits, nextprime
    def A064538(n):
        p, m = 2, n+1
        while p <= (n+2)//(2+ (n% 2)):
            if sum(d for d in digits(n+1,p)[1:]) >= p:
                m *= p
            p = nextprime(p)
        return m # Chai Wah Wu, Mar 07 2018
  • Sage
    A064538 = lambda n: (n+1)*mul([p for p in (2..(n+2)//(2+n%2)) if is_prime(p) and sum((n+1).digits(base=p)) >= p])
    print([A064538(n) for n in (0..48)]) # Peter Luschny, May 14 2017
    

Formula

a(n) = (n+1)*A195441(n). - Jonathan Sondow, Nov 12 2015
A001221(a(n)/(n+1)) = A001222(a(n)/(n+1)). - Kieren MacMillan and Jonathan Sondow, Nov 20 2015
rad(a(n)) = A007947(a(n)) = A144845(n) = A324369(n+1) * A324370(n+1) * A324371(n+1). - Bernd C. Kellner, Oct 12 2023