cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064541 Numbers k such that 2^k ends in k.

Original entry on oeis.org

36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 8098615075353432948736, 38098615075353432948736
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 08 2001

Keywords

Comments

There is no term with 15 digits.

Examples

			2^36 = 68719476736 which ends in 36.
		

Crossrefs

The leading digits are listed in A064540.
Digits read backwards form A133612.

Programs

  • Mathematica
    a[1] = 36; a[n_] := a[n] = For[ida = IntegerDigits[a[n-1]]; k = 1, True, k++, idk = IntegerDigits[k]; pm = PowerMod[2, an = FromDigits[Join[idk, ida]], 10^IntegerLength[an]]; If[pm == an, Return[an]]]; Array[a, 20] (* Jean-François Alcover, Feb 15 2018 *)

Formula

a(n+1) is a suffix of 2^a(n) formed by a nonzero digit followed by a number of zeros and a(n). E.g., a(13)=75353432948736 and 2^a(13) ends with ...15075353432948736, hence a(14)=5075353432948736. - Max Alekseyev, Apr 18 2007
Can be obtained from A109405 by removing all repeats. - Max Alekseyev, May 11 2007

A113627 a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k may have fewer than n digits and can be padded with leading zeros (cf. A121319).

Original entry on oeis.org

14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 98615075353432948736
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 23 2007

Keywords

Examples

			2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
		

Crossrefs

See A121319, the main entry for this sequence, for further information.
Same as A109405 except for the initial term (14). - Max Alekseyev, May 11 2007

A121319 a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k must have at least n digits (cf. A113627).

Original entry on oeis.org

14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 1075353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736
Offset: 1

Views

Author

Tanya Khovanova, Aug 25 2006

Keywords

Examples

			2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{k = If[n == 1, 2, 10], m = 10^n}, While[ PowerMod[2, k, m] != Mod[k, m], k += 2]; k]; Do[ Print@f@n, {n, 9}] (* Robert G. Wilson v *)
  • PARI
    A121319(n) = { local(k,tn); tn=10^n ; forstep(k=2,1000000000,2, if ( k % tn == (2^k) % tn, return(k) ; ) ; ) ; return(0) ; } { for(n = 1,13, print( A121319(n)) ; ) ; } \\ R. J. Mathar, Aug 27 2006

Formula

If A109405(n) has n digits, a(n) = A109405(n), otherwise a(n) = A109405(n) + 10^n. - Max Alekseyev, May 05 2007

Extensions

a(6)-a(9) from Robert G. Wilson v and Jon E. Schoenfield, Aug 26 2006
a(10) from Robert G. Wilson v, Sep 26 2006
a(11)-a(16) from Alexander Adamchuk, Jan 28 2007
a(16) corrected by Max Alekseyev, Apr 12 2007
Showing 1-3 of 3 results.