cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A113627 a(n) is the smallest number k such that k and 2^k have the same last n digits. Here k may have fewer than n digits and can be padded with leading zeros (cf. A121319).

Original entry on oeis.org

14, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 98615075353432948736
Offset: 1

Views

Author

Jon E. Schoenfield, Apr 23 2007

Keywords

Examples

			2^14 = 16384 and 14 end with the same single digit 4, thus a(1) = 14.
		

Crossrefs

See A121319, the main entry for this sequence, for further information.
Same as A109405 except for the initial term (14). - Max Alekseyev, May 11 2007

A064541 Numbers k such that 2^k ends in k.

Original entry on oeis.org

36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 8098615075353432948736, 38098615075353432948736
Offset: 1

Views

Author

Jonathan Ayres (jonathan.ayres(AT)btinternet.com), Oct 08 2001

Keywords

Comments

There is no term with 15 digits.

Examples

			2^36 = 68719476736 which ends in 36.
		

Crossrefs

The leading digits are listed in A064540.
Digits read backwards form A133612.

Programs

  • Mathematica
    a[1] = 36; a[n_] := a[n] = For[ida = IntegerDigits[a[n-1]]; k = 1, True, k++, idk = IntegerDigits[k]; pm = PowerMod[2, an = FromDigits[Join[idk, ida]], 10^IntegerLength[an]]; If[pm == an, Return[an]]]; Array[a, 20] (* Jean-François Alcover, Feb 15 2018 *)

Formula

a(n+1) is a suffix of 2^a(n) formed by a nonzero digit followed by a number of zeros and a(n). E.g., a(13)=75353432948736 and 2^a(13) ends with ...15075353432948736, hence a(14)=5075353432948736. - Max Alekseyev, Apr 18 2007
Can be obtained from A109405 by removing all repeats. - Max Alekseyev, May 11 2007

A109405 a(2) = 36; for n >= 3, a(n) = 2^a(n-1) mod 10^n.

Original entry on oeis.org

36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736
Offset: 2

Views

Author

N. J. A. Sloane, following email from Max Alekseyev, May 06 2007

Keywords

Comments

Decimal digits read backwards form A133612.
Related to but different from A064541 and A121319.

Crossrefs

Same as A113627 except for the initial term (14). - Max Alekseyev, May 11 2007

Programs

  • Mathematica
    a = 36; For[n = 3, n < 25, n++, a = PowerMod[2, a, 10^n]; Print[a]] (* Stefan Steinerberger, May 25 2007 *)
    nxt[{n_,a_}]:={n+1,PowerMod[2,a,10^(n+1)]}; NestList[nxt,{2,36},20][[All,2]] (* Harvey P. Dale, Jan 22 2023 *)

Extensions

More terms from Stefan Steinerberger, May 25 2007
Showing 1-3 of 3 results.